Skip to main content
Log in

Theory of interfacial phase transitions in surfactant systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The spin-1 Ising model, which is equivalent to the three-component lattice gas model, is used to study wetting transitions in three-component surfactant systems consisting of an oil, water, and a nonionic surfactant. Phase equilibria, interfacial profiles, and interfacial tensions for three-phase equilibrium are determined in mean field approximation, for a wide range of temperature and interaction parameters. Surfactant interaction parameters are found to strongly influence interfacial tensions, reducing them in some cases to ultralow values. Interfacial tensions are used to determine whether the middle phase, rich in surfactant, wets or does not wet the interface between the oil-rich and water-rich phases. By varying temperature and interaction parameters, a wetting transition is located and found to be of the first order. Comparison is made with recent experimental results on wetting transitions in ternary surfactant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Percus,J. Stat. Phys. 47:801 (1987).

    Google Scholar 

  2. S. Dietrich, inPhase Transitions and Critical Phenomena, Vol. 12, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1988), p. 1.

    Google Scholar 

  3. D. E. Sullivan and M. M. Telo da Gama, inFluid Interfacial Phenomena, C. A. Croxton, ed. (Wiley, New York, 1985), p. 45.

    Google Scholar 

  4. Y. Seeto, J. E. Puig, L. E. Scriven, and H. T. Davis,J. Colloid Interface Sci. 96:360 (1983).

    Google Scholar 

  5. J. C. Lang and B. Widom,Physica A 81:190 (1975).

    Google Scholar 

  6. M. Kahlweit, R. Strey, P. Firman, D. Haase, J. Jen, and R. Schomacker,Langmuir 4:499 (1988).

    Google Scholar 

  7. M. Kahlweit and G. Busse,J. Chem. Phys. 91:1339 (1989).

    Google Scholar 

  8. M. Robert and J. F. Jeng,J. Phys. (Paris)49:1821 (1988).

    Google Scholar 

  9. L. J. Chen, J. F. Jeng, M. Robert, and K. P. Shukla,Phys. Rev. A 42:4716 (1990).

    Google Scholar 

  10. G. N. Antonow,J. Chim. Phys. 5:372 (1907);Kolloid-Z. 9:7 (1932);64:336 (1933).

    Google Scholar 

  11. N. K. Adam,The Physics and Chemistry of Surfaces, 3rd ed. (Oxford University Press, 1941), pp. 7, 214–215.

  12. F. Neumann, inVorlesungen über die Theorie der Kapillaritat, A. Wangerin, ed. (Teubner, Leipzig, 1894), Chapter 6, Section 1, pp. 161–162.

    Google Scholar 

  13. F. P. Buff and H. Saltsburg,J. Chem. Phys. 26:23 (1957).

    Google Scholar 

  14. F. B. Buff, inEncyclopedia of Physics, S. Flugge, ed. (Springer, Berlin, 1960), Vol. 10, Section 7, pp. 298–299.

    Google Scholar 

  15. Y. Tolman and S. Prager,J. Chem. Phys. 69:2984 (1978); J. Jouffry, P. Levinson, and P. G. de Gennes,J. Phys. (Paris)43:1241 (1982).

    Google Scholar 

  16. B. Widom,J. Chem. Phys. 81:1030 (1984).

    Google Scholar 

  17. S. A. Safran, D. Roux, and M. E. Cates and D. Andelmann,Phys. Rev. Lett. 57:491 (1986).

    Google Scholar 

  18. W. R. Rossen, R. G. Brown, H. T. Davis, S. Prager, and L. E. Scriven,Soc. Petroleum Eng. J. 22:945 (1982); M. Kahlweit, R. Strey, and G. Busse,J. Phys. Chem. 94:3881 (1990).

    Google Scholar 

  19. B. Widom,J. Chem. Phys. 84:6943 (1986).

    Google Scholar 

  20. J. C. Wheeler and B. Widom,J. Am. Chem. Soc. 90:3064 (1968); J. C. Wheeler,J. Chem. Phys. 62:433 (1975); A. Robledo,Eur. Lett. 1:303 (1986).

    Google Scholar 

  21. T. P. Stockfisch and J. C. Wheeler,J. Phys. Chem. 92:3292 (1988).

    Google Scholar 

  22. K.-A. Dawson,Phys. Rev. A 35:1766 (1987).

    Google Scholar 

  23. K. A. Dawson, B. L. Walker, and A. Berera,Physica A 165:320 (1990).

    Google Scholar 

  24. M. Schick and W.-H. Shih,Phys. Rev. B 34:1797 (1986);Phys. Rev. Lett. 59:1205 (1987).

    Google Scholar 

  25. G. Gomper and M. Schick,Phys. Rev. Lett. 62:1647 (1989);Phys. Rev. B 41:9148 (1990).

    Google Scholar 

  26. K. Chen, C. Ebner, C. Jayaprakash, and R. Pandit,J. Phys. C 20:L361 (1987).

    Google Scholar 

  27. A. Ciach, J. S. Hoye, and G. Stell,J. Chem. Phys. 90:1214 (1989).

    Google Scholar 

  28. A. Ciach and J. S. Hoye,J. Chem. Phys. 90:1222 (1989).

    Google Scholar 

  29. M. Blume, V. Emery, and R. B. Griffiths,Phys. Rev. A 4:1071 (1971); D. Mukamel and M. Blume,Phys. Rev. A 10:610 (1974); see also D. Furman, S. Dattagupta, and R. B. Griffiths,Phys. Rev. B 15:441 (1977).

    Google Scholar 

  30. M. Kahlweit, R. Strey, and J. Jen, inProgress in Microemulsions, S. Martellucci and A. N. Chester, eds. (Plenum Press, New York, 1989), p. 61.

    Google Scholar 

  31. G. Gomper and M. Schick,Phys. Rev. Lett. 65:116 (1990); in Proceedings of the ACS Symposium “Fundamental Properties of Interfaces in Simple and Complex Fluids,” Boston, April 1990,Physica A 172:200 (1991).

    Google Scholar 

  32. O. Abillon, L. T. Lee, D. Langevin, and K. Wong, in Proceedings of the ACS Symposium “Fundamental Properties of Interfaces in Simple and Complex Fluids,” Boston, April 1990,Physica A 172:209 (1991).

  33. L. M. Trejo, J. Gracia, C. Varea, and A. Robledo,Europhys. Lett. 7:537 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to J. K. Percus in honor of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, K.P., Payandeh, B. & Robert, M. Theory of interfacial phase transitions in surfactant systems. J Stat Phys 63, 1053–1075 (1991). https://doi.org/10.1007/BF01029999

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029999

Key words

Navigation