Skip to main content
Log in

Signatures of a universal spectrum for atmospheric interannual variability in some disparate climatic regimes

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power law form for power spectra of temporal fluctuations on all space-tie scales ranging from turbulence (centimetersseconds) to climate (kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures ofself-organized criticality. Standard models in meteorological theory cannot explain satisfactorily the observed self-organized criticality in atmospheric flows. Mathematical models for simulation and prediction of atmospheric flows are nonlinear and do not possess analytical solutions. Finite precision computer realizations of nonlinear models give unrealistic solutions because ofdeterministic chaos, a direct consequence of round-off error growth in iterative numerical computations. Recent studies show that roundoff error doubles on an average for each iteration of iterative computations. Round-off error propagates to the main stream computation and gives unrealistic solutions in numerical weather prediction (NWP) and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. An alternative non-deterministic cell dynamical system model for atmospheric flows described in this paper predicts the observed self-organized criticality as intrinsic to quantumlike mechanics governing flow dynamics. The model provides universal quantification for self-organized criticality in terms of the statistical normal distribution. Model predictions are in agreement with a majority of observed spectra of time series of several standard climatological data sets representative of disparate climatic regimes. Universal spectrum for natural climate variability rules out linear trends. Man-made greenhouse gas related atmospheric warming will result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference to possible prediction of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anandan, J., 1992: The geometric phase.Nature,360, 307–313.

    Google Scholar 

  • Arber, A., 1950:The Natural Philosophy of Plant Form. London: Cambridge University Press.

    Google Scholar 

  • Back, C. H., Wurch, Ch., Avateriaus, A., Ramsperger, U., Maier, U., Pescia, D., 1995: Experimental confirmation of universality for a phase transition in two dimensions.Nature,378, 597–600.

    Google Scholar 

  • Bak, P., Tang, C., Wiesenfeld, K., 1987: Self-organized criticality: an explanation of 1/f noise.Phys. Rev. Lett.,59, 381–384.

    Google Scholar 

  • Bak, P. C., Tang, C., Wiesenfeld, K., 1988: Self-organized criticality.Phys. Rev. A.,38, 364–374.

    Google Scholar 

  • Bak, P., Chen, K., 1989: The physics of fractals.Physica D,38, 5–12.

    Google Scholar 

  • Bak, P., Chen, K., 1991: Self-organized criticality.Sci. Am.,January, 26–33.

    Google Scholar 

  • Bardeen, J., 1990: Superconductivity and other macroscopic quantum phenomena.Physics Today,December, 25–31.

    Google Scholar 

  • Bassingthwaighte, J. B., Beyer, R. P., 1991: Fractal correlations in heterogenous systems.Physica D,53, 71–84.

    Google Scholar 

  • Berry, M. V., 1988: The geometric phase.Sci. Amer.,Dec., 26–32.

    Google Scholar 

  • Besicovitch, A. E., 1929: On linear sets of points of fractional dimension.Math. Ann.,101, 161–193.

    Google Scholar 

  • Blank, M., 1994: Pathologies generated by round-off in dynamical systems.Physica D,78, 93–114.

    Google Scholar 

  • Brown, J., 1996: Where two worlds meet.New Scientist,18 May 26–30.

    Google Scholar 

  • Buchanan, M., 1997: One law to rule them all.New Scientist,8 Nov., 30–35.

    Google Scholar 

  • Burroughs, W. J., 1992:Weather Cycles: Real or Imaginary? Cambridge: Cambridge University Press.

    Google Scholar 

  • Canavero, F. G., Einaudi, F., 1987: Time and space variability of atmospheric processes.J. Atmos. Sci.,44(12), 1589–1604.

    Google Scholar 

  • Cipra, B., 1996: A new theory of turbulence causes a stir among experts.Science,272, 951.

    Google Scholar 

  • Clough, S., 1988: The wrong side of quantum tracks.New Scientist,22 March, 37–40.

    Google Scholar 

  • Corless, R. M., Frank, G. W., Monroe, J. G., 1990: Chaos and continued fractions.Physica D,46, 241–253.

    Google Scholar 

  • Davies, P. C. W., 1986:The Forces of Nature, 2nd edn. Cambridge: Cambridge University Press.

    Google Scholar 

  • Deering, W., West, B. J., 1992: Fractal physiology.IEEE Engineering in Medicine and Biology,June, 40–46.

    Google Scholar 

  • Dennin, M., Ahlers, G., Cannell, D. S., 1996: Spatiotemporal chaos in electroconvection.Science,272, 388–396.

    Google Scholar 

  • Dewdney, A. K., 1986: Computer recreations.Sci. Am.,255, 14–23.

    Google Scholar 

  • Dewdney, C., Holland, P. R., Kyprianidis, A., Vigier, J. P., 1988: Spin and non-locality in quantum mechanics.Nature,336, 536–544.

    Google Scholar 

  • DiVincenzo, D. P., 1989: Perfect quasicrystals?Nature,340, 504.

    Google Scholar 

  • El Naschie, M. S., 1997: Remarks on superstrings, fractal gravity, Nagasawa's diffusion and Cantorian spacetime.Chaos, Solitan's and Fractals,8(11), 1873–1886.

    Google Scholar 

  • Feigenbaum, M. J., 1980: Universal behaviour in nonlinear systems.Los Alamos Sci.,1, 4–27.

    Google Scholar 

  • Freeman, G. R., 1987: Introduction. In: Freeman, G. R. (ed.)Kinetics of Nonhomogenous Processes. NY: John Wiley, pp. 1–18.

    Google Scholar 

  • Freeman, G. R., 1990: KNP89: Kinetics of non homogenous processes (KNP) and nonlinear dynamics.Can. J. Phys.,68, 6550659.

    Google Scholar 

  • Frisch, U., Orszag, S. A., 1990: Turbulence: Chaellenges for theory and experiment.Physics Today,January, 24–32.

    Google Scholar 

  • Ghashghaie, S., Breymann, Peinke, J., Talkner, P., Dodge, Y., 1996: Turbulent cascades in foreign exchange markets.Nature,381, 767–770.

    Google Scholar 

  • Ghil, M., 1994: Cryothermodynamics: the chaotic dynamics of paleoclimate.Physica D,77, 130–159.

    Google Scholar 

  • Gleick, J., 1987:Chaos: Making a New Science. New York: Viking.

    Google Scholar 

  • Goldberger, A. L., Rigney, D. R., West, B. J., 1990: Chaos and fractals in human physiology.Sci. Am.,262(2), 42–49.

    Google Scholar 

  • Gross, D. J., 1985: On the uniqueness of physical theories. In: De Tar, C., Finkelstein, J., Tan, C-I. A., (eds.)Passion for Physics. Singapore: World Scientific.

    Google Scholar 

  • Grossing, G., 1989: Quantum systems as order out of chaos phenomena.II Nuovo Cimento,103B, 497–510.

    Google Scholar 

  • Gutenberg, B., Richter, R. F., 1944: Frequency of earthquakes in California.Bull. Seis. Soc. Amer.,34, 185.

    Google Scholar 

  • Haken, H., 1989: Synergetics: an overview.Reports or progress in Physics,52(7), 517–552.

    Google Scholar 

  • Hargittai, I., Pickover, C. A. (eds.) 1992:Spiral Symmetry. Singapore: World Scientific.

    Google Scholar 

  • Hartittai, I., (ed.) 1992:Fivefold Symmetry. Singapore: World Scientific.

    Google Scholar 

  • Hausdorff, F., 1919: Dimension und ausseres mass.Math. Ann.,29, 157–179.

    Google Scholar 

  • Hingane, L. S., Patil, S. D., 1996: Total ozone in the most humid monsoon region.Meteorol. Atmos. Phys.,58, 215–221.

    Google Scholar 

  • Hooge, C., Lovejoy, S., Schertzer, D., Pecknold, S., Malouin, J. F., Schmitt, F., 1994: Multifractal phase transitions: the origin of self-organized criticality in earthquakes.Nonlinear Processes in Geophysics,1, 191–197.

    Google Scholar 

  • Houghton, J. T., Callander, B. A. Varney, S. K., 1992:Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., Maskell, K., 1996:Climate Change 1995, Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hurrel, J. W., Van Loon, H., 1994: A modulation of the atmospheric annual cycle in the southern hemisphere.Tellus,46A, 325–338.

    Google Scholar 

  • Hurst, H. E., 1951: Long-term storage capacity of reservoirs.Trans. Amer. Soc. Civ. Engrs.,116, 770–808.

    Google Scholar 

  • Hurst, H. E., Black, R. P., Simaiki, Y. M., 1995:Long-term Storage: An Experimental Study. London: Constable.

    Google Scholar 

  • Insinnia, E. M., 1992: Synchronicity and coherent excitations in microtubules.Nanobiology,1(2), 191–208.

    Google Scholar 

  • Jenkinson, A. F., 1977:A Powerful Elementary Method of Spectral Analysis for use with Monthly. Seasonal or Annual Meteoroligical Time Series. Meteorological Office, London, Branch Memorandum No. 57, pp. 1–23.

    Google Scholar 

  • Jean, R. V., 1994:Phyllotaxis: A systemic Study in Plant Morphogenesis. NY, USA: Cambridge University Press.

    Google Scholar 

  • Jurgen, H., Peitgen, H-O., Saupe, D., 1990: The language of fractals.Sci. Amer. 263, 40–49.

    Google Scholar 

  • Kadanoff, L. P., 1996: Turbulent excursions.Nature,382, 116–117.

    Google Scholar 

  • Kane, R. P., 1996: Quasibiennial and quasitriennial oscillations in some atmospheric parameters.PAGEOPH,147(3), 567–583.

    Google Scholar 

  • Kappraff, J., 1992: The relationship between mathematics and mysticism of the golden mean through history. In: Hargittai, I. (ed.)Fivefold Symmetry. Singapore: World Scientific, pp. 33–65.

    Google Scholar 

  • Kelly, P. M., Jones, P. D., 1981: Winter temperature in the Arctic, 1882–1981.Climate Monitor,10(1), 9–10.

    Google Scholar 

  • Kelly, P. M., Jones, P. D., 1981: Spring temperature in the Arctic, 1881–1981.Climate Monitor,10(2), 40–41.

    Google Scholar 

  • Kelly, P. M., Jones, P. D., 1981: Summer temperatures in the Arctic, 1881–1981.Climate Monitor,10(3), 66–67.

    Google Scholar 

  • Kelly, P. M., Jones, P. D., 1981: Autumn temperatures in the Arctic, 1881–1981.Climate Monitor,10(4), 94–95.

    Google Scholar 

  • Kelly, P. M., Jones, P. D., 1981: Annual temperatures in the Arctic, 1881–1981.Climate Monitor,10(5), 122–124.

    Google Scholar 

  • Kepler, T. B., Kagan, M. L., Epstein, I. R., 1991: Geometric phases in dissipative systems.Chaos,1(4), 455–461.

    Google Scholar 

  • Kepler, T. B., 1992: Geometric phase shifts in dissipative classical systems.Modern Physics Letters B,6(26), 1613–1622.

    Google Scholar 

  • Kerr, R. A., 1994: Climate modelling's fudge factor comes under fire.Science,265, 1528.

    Google Scholar 

  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible liquids for very high Reynolds numbers.C. R. Rus. Acad. Sci.,30, 301–305.

    Google Scholar 

  • Kolmogorov, A. N., 1962: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous inhomogenous fluid at high Reynolds number.J. Fluid Mech. 13, 82–85.

    Google Scholar 

  • Levich, E., 1987: Certain problems in the theory of developed hydrodynamic turbulence.Physics Reports,151(3,4), 129–238.

    Google Scholar 

  • Levine, D., Steinhardt, J., 1984: Quasicrystals: A new class of ordered structures.Phys. Rev. Letts.,53(26), 2477–2480.

    Google Scholar 

  • Levy, P., 1937:Theorie de l'addition des variables aleatoires. Paris: Gautheir-Villiers.

    Google Scholar 

  • Liu, S. H., 1992: Formation and anomalous properties of fractals.IEEE Engineering in Medicine and Biology,June, 28–39.

    Google Scholar 

  • Lord, E. A., 1991: Quasicrystals and penrose patterns.Current Science,61(5), 313–319.

    Google Scholar 

  • Lorenz, E. N., 1963: Deterministic non-periodic flow.J. Atmos. Sci.,20, 130–141.

    Google Scholar 

  • Lorenz, E. N., 1989: Computational chaos — a prelude to computational instability.Physica D,35, 299–317.

    Google Scholar 

  • Lorenz, E. N., 1991: Dimension of weather and climate attractors.Nature,353, 241–244.

    Google Scholar 

  • Lovejoy, S., 1982: Area-perimeter relation for rain and cloud areas.Science,216, 185–187.

    Google Scholar 

  • Lovejoy, S., Schertzer, D., 1986a: Scale invariance, symmetries, fractal and stochastic simulations of atmospheric phenomena.Bull. Amer. Meteor. Soc.,67, 21–32.

    Google Scholar 

  • Lovejoy, S., Schertzer, D., 1986b: Scale invariance in climatological temperatures and the local spectral plateau.Annales Geophysicae,4B, 401–410.

    Google Scholar 

  • Maddox, J., 1988a: Licence to slang Copenhagen?Nature,332, 581.

    Google Scholar 

  • Maddox, J., 1988b: Turning phases into frequencies.Nature,334, 99.

    Google Scholar 

  • Maddox, J., 1991: Non-locality bursts into life.nature,352, 277.

    Google Scholar 

  • Maddox, J., 1992: Long-range correlations within DNA,Nature,358, 103.

    Google Scholar 

  • Maddox, J., 1993: Can quantum theory be understood?Nature,361, 493.

    Google Scholar 

  • Mandelbrot, B. B., Wallis, J. R., 1969: Some long-run properties of geophysical records.Water Resour. Res.,5, 321–340.

    Google Scholar 

  • Mandelbrot, B. B., 1975: On the geometry of homogenous turbulence with stress on the fractal dimension of the isosurfaces of scalars.J. Fluid Mech.,72, 401–416.

    Google Scholar 

  • Mandelbrot, B. B., 1977:Fractals: Form, Chance and Dimension. San Francisco: Freeman.

    Google Scholar 

  • Mandelbrot, B. B., 1983:The Fractal Geometry of Nature. San Francisco: W. H. Freeman, 468 pp.

    Google Scholar 

  • Mantegna, R. N., Stanley, H. E., 1995: Scaling behaviour in the dynamics of an economic index.Nature,376, 46–49.

    Google Scholar 

  • Mary Selvam, A., 1990: Deterministic chaos, fractals and quantumlike mechanics in atmospheric flows.Can. J. Phys.,68, 831–841.

    Google Scholar 

  • Mary Selvam, A., Pethkar, J. S., Kulkarni, M. K., 1992. Signatures of a universal spectrum for atmospheric interannual variability in rainfall time series over the Indian region.Int. J. Climatol.,12, 137–152.

    Google Scholar 

  • Mary Selvam, A., 1993a: Universal quantification for deterministic chaos in dynamical systems.Applied Math. Modelling,17, 642–649.

    Google Scholar 

  • Mary Selvam, A., 1993b: A universal spectrum for interannual variability of monsoon rainfall over India.Adv. Atmos. Sci.,10, 221–226.

    Google Scholar 

  • Mary Selvam, A., Radhamani, M., 1994: Signature of a universal spectrum for nonlinear variability in daily columnar total ozone content.Adv. Atmos. Sci.,11(3), 335–342.

    Google Scholar 

  • Mary Selvam, A., Joshi, R. R., Vijaykumar, R., 1994: Self organized criticality inCOADS temperature time series: Implication for climate prediction. In: Mathai, C. V., Stensland, G. (eds.)Global Climate Change: Science, Policy and Mitigation Strategies. Proc. of the Air and Waste Management Association, Int'I. Speciality Conf., Phoenix, Arizona, April, 196–205.

  • Mary Selvam, A., 1994: The physics of deterministic chaos: Implications for global climate model predictions. In: Mathai, C. V., Stensland, G. (eds.)Global Climate Change: Science, Policy and Mitigation Strategies. Proc. of the Air and Waste Management Association, Int'I. Speciality Conf., Phoenix, Arizona April, 412–417.

  • mary Selvam, A., Pethkar, J. S., Kulkarni, M. K., 1995: Some unique characteristics of atmospheric interannual variability in rainfall time series over India and the United Kingdom.Adv. Atmos. Sci.,12(3), 377–385.

    Google Scholar 

  • Mary Selvam, A., Radhamani, M., 1995: Universal spectrum for short period (days) variability in atmospheric total ozone.Mausam,46(3), 297–302.

    Google Scholar 

  • Mary Selvam, A., Joshi, R. R., 1995: Universal spectrum for interannual variability inCOADS global air and sea surface temperatures.Int. J. Climatol.,15, 613–624.

    Google Scholar 

  • Mary Selvam, A., Pethkar, J. S., Kulkarni, M. K., Vijayakumar, R., 1966: Signatures of a universal spectrum for atmospheric interannual variability inCOADS surface pressure time series.Int. J. Climatol.,16, 1–11.

    Google Scholar 

  • Mary Selvam, A., 1997: Quasicrystalline pattern formation in fluid substrates and phyllotaxis. In: Barabe, D., Jean R. V. (eds.)Symmetry in Plants. World Scientific Series No 4. in Mathematical Biology and Medicine. Singapore: World Scientific, (in press).

    Google Scholar 

  • Mintmire, J. W., 1996: Fullerene formation and annealing.Science,272, 45–46.

    Google Scholar 

  • Monin, A. S., Yaglom, A. M., 1975:Statistical Hydrodynamics, Vols. 1 and 2. Cambridge, Ma: MIT Press.

    Google Scholar 

  • Mukerjee, M., 1995: Quasimodal.Sci. Amer.,273(2), 18.

    Google Scholar 

  • Muller, A., Beugholt, C., 1996: The medium is the message.Nature,383, 296–297.

    Google Scholar 

  • Narlikar, V. N., 1982:Violent Phenomena in the Universe. Oxford: Oxford University Press, pp. 213.

    Google Scholar 

  • Narlikar, J. V., 1996:The Lighter Side of Gravity. Cambridge: Cambridge University Press, pp. 217.

    Google Scholar 

  • Nauenberg, M., Stroud, C., Yeazell, J., 1994: The classical limit of an atom.Sci. Amer.,Jun., 24–29.

    Google Scholar 

  • Nelson, D. R., 1986: Quasicrystals.Sci. Amer.,255, 42–51.

    Google Scholar 

  • Nicolis, G., Prigogine, I., 1977:Self-Organization in Non Equilibrium Systems. New York: Wiley.

    Google Scholar 

  • Omnes, R., 1994:The Interpretation of Quantum Mechanics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Omori, F., 1895: On the aftershocks of earthquakes.J. Coll. Sci.,7, 111, 1895.

    Google Scholar 

  • Parthasarathy, B., Rupakumar, K., Munot, A. A., 1995:Monthly and seasonal rainfall series for all-India homogenous regions and meteorological subdivisions: 1871–1994. Research Report No. RR-065, Contributions from Indian Institute of Tropical Meteorology.

  • Petigen, H.-O., Richter, P. H., Saupe, D., 1992:Chaos and Fractals: New Frontiers in Science. New York: Springer, p. 971.

    Google Scholar 

  • Peng, C. K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M., Stanley, H. E., 1992: Longrange correlations in nucleotide sequences.Nature,356, 168–170.

    Google Scholar 

  • Penrose, R., 1974: The role of aesthetics in pure and applied mathematical research.Bull. Inst. Math. Appl.,10, 266–271, reprinted In: Steinhardt, P. J., Ostlund, S. (eds.)The Physics of Quasicrystals. Singapore: World Scientific, 1987.

    Google Scholar 

  • Penrose, R., 1979: Pentaplexity.Math. Intell.,2(1), 32–37.

    Google Scholar 

  • Philander, S. G., 1990:El Nino, La Nino and the Southern Oscillation. (International Geophysical Series46) New York: Academic Press, pp. 293.

    Google Scholar 

  • Poincare, H., 1892:Les Methodes Nouvelle de la Mecannique Celeste. Paris: Gautheir-Villars.

    Google Scholar 

  • Prigogine, I., 1980:From Being to Becoming. San Francisco: Freeman.

    Google Scholar 

  • Prigogine, I., Stengers, I., 1988:Order Out of Chaos, 3rd edn. London: Fontana Paperbacks.

    Google Scholar 

  • Rae, A., 1986: Extrasensory quantum physic.New Scientist,27 Nov., 36–39.

    Google Scholar 

  • Rae, A., 1988:Quantum-physics: Illusion or Reality? New York: Cambridge University Press, p. 129.

    Google Scholar 

  • Rapier, S. C. B., 1983: Summer temperature in the Antarctic, 1958–1983.Climate Monitor,12(1), 44–45.

    Google Scholar 

  • Rapier, S. C. B., 1983: Winter temperatures in the Antarctic, 1957–1983.Climate Monitor,12(3), 76–77.

    Google Scholar 

  • Rapier, S. C. B., 1983: Spring temperature in the Antarctic, 1957–1983.Climate Monitor,12(4), 115–116.

    Google Scholar 

  • Rapier, S. C. B., 1983: Annual temperature in the Antarctic, 1957–1983.Climate Monitor,12(5), 142–144.

    Google Scholar 

  • Rhodes, C. J., Anderson, R. M., 1996: Power laws governing epidemics in isolated populations.Nature,381, 600–602.

    Google Scholar 

  • Richards, D., 1988: Order and chaos in strong fields.Nature.336, 518–519.

    Google Scholar 

  • Richardson, L. F., 1960: The problem of contiguity: an appendix to statistics of deadly quarrels. In: Von Bertalanffy, L., Rapoport, A. (eds.)General Systems — Year book of the society for general systems research, V pp 139–187, Ann Arbor, MI.

  • Richardson, L. F., 1965:Weather Prediction by Numerical Process, Mineola, N. Y.: Dover.

    Google Scholar 

  • Samuel, J., Bhandari, R., 1988: General setting for Berry's phase.Phys. Rev. Letts.,60(23), 2339–2342.

    Google Scholar 

  • Schepers, H. E., Van Beek, J. H. G. M., Bassingthwaighte, J. B., 1992: Four methods to estimate the fractal dimension from self-affine signals.IEEE Engineering in medicine and biology,June, 57–71.

    Google Scholar 

  • Schertzer, D., Lovejoy, S., 1991: Nonlinear geodynamical variability, multiple sigularities, universality and observables. In: Schertzer, D., Lovejoy, S., (eds.)Scaling, Fractals and Nonlinear Variability in Geophysics. Norwell, Mass: Kluwer Acad., pp. 41–82.

    Google Scholar 

  • Schertzer, D., Lovejoy, S., 1994: Multifractal generation of self-organized criticality. In: Novak, M. M. (ed.)Fractals in the Natural and Applied Sciences (A-41), North-Holland: Elsevier Science B. V., pp. 325–339.

    Google Scholar 

  • Schroeder, M., 1991:Fractals, Chaos and Powerlaws, N. Y.: W. H. Freeman.

    Google Scholar 

  • Shlesinger, M. F., West, B. J., Klafter, J., 1987: Levy dynamics of enhanced diffusion: application to turbulence.Phy. Rev. Lett.,58(110), 1100–1103.

    Google Scholar 

  • Simon, R., Kimble, H. J., Sudarshan, E. C. G., 1988: Evolving geometric phase and its dynamical interpretation as a frequency shift: an optical experiment.Phys. Rev. Letts. 61(1), 19–22.

    Google Scholar 

  • Skinner, J. E., 1994: Low dimensional chaos in biological systems.Bio/technology,12, 596–600.

    Google Scholar 

  • Sreenivasan, K. R., 1991: Fractals andmultifractals in turbulence.Annu. Rev. Fluid Mech.,23, 539–600.

    Google Scholar 

  • Stanley, H. E., 1995: Powerlaws and universality.Nature,378, 554.

    Google Scholar 

  • Stanley, M. H. R., Amaral, L. A. N., Buldyrev, S. V., Havlin, S., Leschhorn, H., Maass, P., Salinger, M. A., Stanley, H. E., 1996: Can statistical physics contribute to the science of economics?Fractals,4(3), 415–425.

    Google Scholar 

  • Stanley, H. E., Amaral, L. A. N., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Hyman, B. T., Leschhorn, H., Maass, P., Makse, H. A., Peng, C.-K., Salinger, M. A., Stanley, M. H. R., Viswanathan, G. M., 1996: Scaling and universality in living systems.Fractals,4(3), 427–451.

    Google Scholar 

  • Steinhardt, P., 1997: Crazy crystals.New Scientist,25 Jan, 32–35.

    Google Scholar 

  • Stewart, I., 1992a: Where do nature's patterns come from?Nature,135, 14.

    Google Scholar 

  • Stewart, I., 1992b: Warning-handle with care!Nature,355, 16.

    Google Scholar 

  • Stewart, I., 1995: Daisy, daisy, give your answer do.Sci. Amer.,272, 76–79.

    Google Scholar 

  • Stoddart, F., 1988: Unnatural product synthesis.Nature,334, 10.

    Google Scholar 

  • Strathmann, R. R., 1990: Testing size aboundance rules in a human exclusion experiment.Science,250, 1990.

    Google Scholar 

  • Stevens, P. S., 1974:Patterns in Nature. Boston, USA: Little, Brown.

    Google Scholar 

  • Suki, B., Barabasi, A., Hantos, Z., Petak, F., Stanley, H. E., 1994: Avalanches and power-law behaviour in lung inflation.Nature,368, 615–618.

    Google Scholar 

  • Sun, H. H., Charef, A., 1990: Fractal system — A time domain approach.Annals of Biomedical Engineering,18, 597–621.

    Google Scholar 

  • Tang, C., Bak, P., 1988: Critical exponents and scaling relations for self organized critical phenomena.Phys. Rev. Lett.,60, 2347–2350.

    Google Scholar 

  • Tarasov, L., 1986:This Amazingly Symmetrical World. Moscow: Mir Publishers.

    Google Scholar 

  • Terray, P., 1995: Space-time structure of monsoon interannual variability.J. Climate,8(11), 2595–2619.

    Google Scholar 

  • Tessier, Y., Lovejoy, S., Schertzer, D., 1993: Universal multifractals, theory and observations for rain and clouds.J. Appl. Meteor.,32, 223–250.

    Google Scholar 

  • Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D., Pecknold, S., 1996: Multifractal analysis and modeling of rainfall and river flows and scaling, casual transfer function.J. Geophys. Res.,101(D21), 26427–26440.

    Google Scholar 

  • Thompson, D. W., 1963:On Growth and Form, 2nd edn. Cambridge: Cambridge University Press.

    Google Scholar 

  • Townsend, A. A., 1956:The Structure of Turbulent Shear Flow. London, U. K.: Cambridge University Press.

    Google Scholar 

  • Turing, A. M., 1952: The Chemical Basis of Morphogenesis.Phil. Trans. Roy Soc. (London),B 237, 37–52.

    Google Scholar 

  • Uzer, T., Farrelly, D., Milligan, J. A., Raines, P. E., Skelton, J. P., 1991: Celestial mechanics on a microscopic scale.Science,253, 42–48.

    Google Scholar 

  • Van Der Zeil, A., 1950: On the noise spectra of semiconductor noise and flicker effects.Physica,16, 359–372.

    Google Scholar 

  • Von Baeyer, H., 1990: Impossible crystals.Discover,February, 69–78.

    Google Scholar 

  • Wallace, J. M., Hobbs, P. V., 1977:Atmospheric Science: An Introductory Survey, N. Y.: Academic Press.

    Google Scholar 

  • Wang, X. L., Ropelewski, C. F., 1995: An assessment of ENSO-scale secular variability.J. Climate,8(6), 1584–1599.

    Google Scholar 

  • Weinberg, S., 1993:Dreams of a Final Theory. Vintage, pp. 250.

  • West, B. J., Shlesinger, M. F., 1989: On the ubiquity of 1/f noise.Int. J. Mod. Phys. B,3(6), 795–819.

    Google Scholar 

  • West, B. J., 1990a: Fractal forms in physiology.Int. J. Modern Physics B,4(10), 1629–1669.

    Google Scholar 

  • West, B. J., 1990b: Physiology in fractal dimensions.Annals of biomedical engineering,18, 135–149.

    Google Scholar 

  • Wigley, T. M. L., Jones, P. D., 1982: A new homogenous England and Wales area-average rainfall series, 1766–1980.Climate Monitor,11(4), 106–113.

    Google Scholar 

  • Wilson, K. G., 1979: Problems in physics with many scales of length.Sci. Am.,241(2), 140–157.

    Google Scholar 

  • Wright, P. B., 1989: Homogenized long-period southern oscillation indices.Int. J. Climatol,9(2), 33–54.

    Google Scholar 

  • Zeng, X., Pielke, R. A., Eykholt, R., 1993:Bull. Amer. Meteor. Soc.,74(4), 631–644.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvam, A.M., Fadnavis, S. Signatures of a universal spectrum for atmospheric interannual variability in some disparate climatic regimes. Meteorl. Atmos. Phys. 66, 87–112 (1998). https://doi.org/10.1007/BF01030450

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030450

Keywords

Navigation