Skip to main content
Log in

Numerical studies on cold fronts Part II: Orographic effects on gravity flows

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

A two-dimensional nonhydrostatic numerical model was used to investigate the behaviour of a cold air gravity current, moving along complex terrain. It is found, that the model with a high horizontal and vertical resolution and with a closure scheme, using the turbulent kinetic energy, is suitable to simulate currents, which have the main features of those found in laboratory experiments.

Simulations are presented for different orographic structures (mountain and valley), for varying thermal stratification of the environmental atmosphere (neutral, stable and stable with an elevated inversion) and for different heights of the cold air reservoir.

The major effect of a hill on the advance of a gravity current is a reduction of the front speed upstream as well as (even stronger) downstream of the obstacle, where the amount of this decrease depends on thermal stratification. Near surface blocking of the air flow on the windward side occurs for all simulations. However, for small depths of the oncoming cold air, the current cannot surmount the hill and remains on the lee side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arritt, R. W., 1985: Numerical studies of thermally and mechanically forced circulations over complex terrain. Colorado State University, Fort Collins, 201 pp.

    Google Scholar 

  • Baines, P. G., 1977: Upstream influence and Long's model in stratified flows.J. Fluid Mech.,82, 147–149.

    Google Scholar 

  • Bannon, P. R., 1984: A semi-geostrophic model of frontogenesis over topography.Beitr. Phys. Atmos.,57, 393–408.

    Google Scholar 

  • Bischoff-Gauss, I., Gross, G., 1989: Numerical studies on cold fronts. Part I: Gravity flows in a neutral and stratified atmosphere.Meteorol. Atmos. Phys.,40, 150–158.

    Google Scholar 

  • Brümmer, B., 1988: Structure and circulation in the boundary layer at a strong cold front.Beitr. Phys. Atmos.,61, (in press).

  • Charba, J., 1974: Application of a gravity current model to analysis of squall-line gust fronts.Mon. Wea. Rev.,102, 140–156.

    Google Scholar 

  • Clough, S. A., 1987: The mesoscale frontal dynamics project.Meteorol. Mag.,116, 32–42.

    Google Scholar 

  • Coulman C. E., Colquhoun, J. R., Smith, R. K., McInnes, K., 1985: Orographically forced cold fronts—mean structure and motionBound-Layer Meteor.,32, 57–83.

    Google Scholar 

  • Davies, H. C., 1984: On the orographic retardation of a cold front.Beitr. Phys. Atmosph.,57, 409–418.

    Google Scholar 

  • Gross, G., 1987: Some effects of deforestation on local climate and nocturnal draingage flow—A numerical study.Bound.-Layer Meteor.,38, 315–337.

    Google Scholar 

  • Haderlein, K., 1986: Numerische Modellrechnungen zum Verlagerungsverhalten orographisch modifizierter Kaltfronten. Diploma Thesis, Dept. of Meteorology Univ. München, 65 pp.

  • Hoinka, K. P., 1985: On fronts in central Europe.Beitr. Phys. Atmos.,58, 560–571.

    Google Scholar 

  • Hoinka, K. P., Volkert, H.: 1987: The german front experiment 1987.Bull. Amer. Meteor. Soc.,68, 1424–1427.

    Google Scholar 

  • Houghton, D. D., Kasahara, A., 1968: Nonlinear shallow fluid flow over an isolated ridge.Comp. Pure Appl. Math.,21, 1–23.

    Google Scholar 

  • Lilly, D. K., Klemp J. B., 1979: The effects of terrain shape on nonlinear hydrostatic mountain waves.J. Fluid. Mech.,95, 241–261.

    Google Scholar 

  • Karman, T., 1940: The engineer grapples with nonlinear problems.Bull. Amer. Math. Soc.,56, 615–683.

    Google Scholar 

  • Mahrer, Y., Pielke, R. A., 1977: The effects of topography on sea and land breezes in a two-dimensional numerical model.Mon. Wea. Rev. 105, 1151–1162.

    Google Scholar 

  • Neumann, J., Savijärvi, H.: 1986: The sea breeze on a steep coastBeitr. Phys. Atmos.,59, 375–389.

    Google Scholar 

  • Ookouchi, Y., Uryu, M., Sawada, R., 1978: A numerical study on the effects of a mountain on the land and sea breezes.J. Meteor. Soc. Japan,56, 368–385.

    Google Scholar 

  • Pierrehumpert, R. T., Wyman, B., 1985: Upstream effects of mesoscale mountains.J. Atmos. Sci.,42, 977–1003.

    Google Scholar 

  • Schumann, U., Hauf, T., Höller, H., Schmidt, H., Volkert, H., 1987: A mesoscale model for the simulation of turbulence, clouds and flow over mountains: Formulation and validation examples.Beitr. Phys. Atmos.,60, 413–446.

    Google Scholar 

  • Schumann, U., 1988: Influence of mesoscale orography on idealized cold fronts.J. Atmos. Sci.,44, 3423–3441.

    Google Scholar 

  • Shapiro, M. A., 1984: Meteorological tower measurements of a surface cold front.Mon Wea. Rev.,112, 1634–1639.

    Google Scholar 

  • Young, G. S., Johnson, R. H., 1984: Meso- and Microscale features of a Colorado cold front. J. Climate Appl. Meteor.,23, 1315–1325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischoff-Gauss, I., Gross, G. & Wippermann, F. Numerical studies on cold fronts Part II: Orographic effects on gravity flows. Meteorl. Atmos. Phys. 40, 159–169 (1989). https://doi.org/10.1007/BF01032456

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01032456

Keywords

Navigation