Skip to main content
Log in

Solvation of transition metal complexes: thermochemical approaches

  • Review
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Conclusion and extensions

We hope that this Review has made readers more aware of solvation of inorganic complexes, and of the importance of such knowledge in understanding their chemistryperhaps particularly their reactivity. The approach just set out for inorganic complexes should be of considerable value in the field or organometallic chemistry. In particular, informed use of solvation characteristics should help in optimising conditions for organometallic reactions and in homogeneous catalysis. Unfortunately, solvation data on reactants are too sparse (the subject index ofComprehensive Organometallic Chemistry contains justthree entries under “solubility”!) for serious examination of reactivity trends in terms of initial state and transition state contributions to be possible in almost all areas. Moreover, there are some fundamental problems over transfer parameters. Thus, a favourite electrochemical assumption is that the ferrocene/ferrocinium redox potential is independent of solvent. Yet, the dependence of rate constants on medium for outer-sphere electron transfer in the ferrocene/ferrocinium system can only be understood(66) in terms of specific solvation effects which are incompatible with the parallel solvation changes of these two substrates implicit in the redox potential assumption. The solvation of organometallic species should prove a most rewarding area for continued study, but it will be some time before the overall picture becomes as clear as in the more limited area of classical transition metal complexes considered in the present Review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Blandamer and J. Burgess,Educ. Chem.,24, 85 (1987).

    Google Scholar 

  2. H. D. B. Jenkins and K. F. Pratt,Adv. Inorg. Chem. Radiochem.,22, 1 (1978).

    Google Scholar 

  3. E.g., R. Alexander, A. J. Parker, J. H. Sharp, and W. E. Waghorne,J. Am. Chem. Soc.,94, 1148 (1972); B. E. Conway,J. Soln. Chem.,7, 721 (1978); Y. Marcus,Pure Appl. Chem.,55, 977 (1983); Y. Marcus,Ion Solvation, Wiley, 1986.

    Google Scholar 

  4. R. D. Shannon and C. T. Prewitt,Acta Cryst.,B25, 925 (1969);Idem,B26, 1046 (1970); M. J. Blandamer and M. C. R. Symons,J. Phys. Chem.,67, 1304 (1963).

    Google Scholar 

  5. M. H. Abraham,J. Chem. Soc., Faraday Trans. I.,69, 1375 (1973); S. Villermaux and J.-J. Delpuech,Bull. Soc. Chim. Fr. A, 2534 (1974).

    Google Scholar 

  6. E. Grunwald, G. Baughman, and G. Kohnstam,J. Am. Chem. Soc.,82, 5801 (1960); A. J. Parker and R. Alexander,J. Am. Chem. Soc.,89, 5549 (1967).

    Google Scholar 

  7. J. F. Coetzee and W. R. Sharpe,J. Phys. Chem.,75, 3141 (1971); M. Booij and G. Somsen,Electrochim. Acta,28, 1883 (1983); J. I. Kim and E. A. Gomaa,Bull. Soc. Chem. Belg.,90, 391 (1981); J. I. Kim,Bull. Soc. Chim. Belg.,95, 435 (1986).

    Google Scholar 

  8. M. H. Abraham, T. Hill, H. C. Ling, R. A. Shultz, and R. A. C. Watt,J. Chem. Soc., Faraday Trans. I.,80, 489 (1984).

    Google Scholar 

  9. O. Povovych,Analyt. Chem.,38, 558 (1966); O. Popovych and A. J. Dill,Analyt. Chem.,41, 456 (1969); O. Popovych,Crit. Rev. Analyt. Chem.,1, 73 (1970).

    Google Scholar 

  10. J. C. Jayne and E. L. King,J. Am. Chem. Soc.,86, 3989 (1964); D. W. Kemp and E. L. King,J. Am. Chem. Soc.,89, 3433 (1967); L. P. Scott, T. J. Weeks, D. J. Bracken, and E. L. King,J. Am. Chem. Soc.,91, 5219 (1969).

    Google Scholar 

  11. M. J. Blandamer and J. Burgess,Inorg. Chim. Acta,64, L113 (1982);J. Chem. Soc., Dalton Trans., 867 (1985); D. Sengupta, A. Pal, and S. C. Lahiri,J. Chem. Soc., Dalton Trans., 868 (1985).

    Google Scholar 

  12. M. J. Blandamer, J. Burgess, B. Clark, D. Elvidge, A. W. Hakin, P. Guardado, and C. D. Hubbard,J. Chem. Soc., Faraday Trans. I., accepted for publication.

  13. J. F. Coetzee and W. K. Istone,Analyt. Chem.,52, 53 (1980); A. Lewandowski,Electrochim. Acta,29, 547 (1984);Idem.,31, 59 (1986).

    Google Scholar 

  14. M. J. Blandamer, J. Burgess, B. Clark, P. P. Duce, A. W. Hakin, N. Gosal, S. Radulovic, P. Guardado, F. Sanchez, C. D. Hubbard, and E. A. Abu-Gharib,J. Chem. Soc., Faraday Trans. I.,82, 1471 (1986).

    Google Scholar 

  15. M. J. Blandamer, J. Burgess, P. P. Duce, N. Gosal, R. Sherry, P. Guardado, and F. Sanchez,Transition Met. Chem.,9, 3 (1984).

    Google Scholar 

  16. S.-I. Ishiguro and H. Ohtaki,J. Coord. Chem.,15, 237 (1987).

    Google Scholar 

  17. J. Burgess and J. Kijowski,Adv. Inorg. Chem. Radiochem.,24, 57 (1981).

    Google Scholar 

  18. M. J. Blandamer, J. Burgess, and J. Kijowski,Inorg. Chem. Acta,58, 155 (1982).

    Google Scholar 

  19. J. Burgess and E. A. Abu-Gharib,J. Chem. Res., (S), 8, (M) 0201.

  20. M. J. Blandamer, J. Burgess, S. J. Hamshere, C. White, R. I. Haines, and A. McAuley,Can. J. Chem.,61, 1361 (1983).

    Google Scholar 

  21. J. Burgess, R. D. Peacock, and J. H. Rogers,J. Fluorine Chem.,19, 333 (1982).

    Google Scholar 

  22. M. J. Blandamer, J. Burgess, and E. A. Abu-Gharib,Transition Met. Chem.,9, 193 (1984).

    Google Scholar 

  23. W. L. Reynolds, M. Glavas, and E. Dzeliliovic,Inorg. Chem.,22, 1946 (1983).

    Google Scholar 

  24. J. Burgess, S. Radulovic, and F. Sanchez,Transition Met. Chem., in press, (TMC 1755).

  25. F. M. van Meter and H. M. Neumann,J. Am. Chem. Soc.,98, 1382 (1976).

    Google Scholar 

  26. E. A. Abu-Gharib, M. J. Blandamer, J. Burgess, N. Gosal, P. Guardado, F. Sanchez, and C. D. Hubbard,Transition Met. Chem.,9, 306 (1984).

    Google Scholar 

  27. J. Burgess,J. Chem. Soc. A, 2728 (1968).

  28. J. Burgess and C. D. Hubbard,J. Chem. Soc., Chem. Comm., 1482 (1983).

  29. M. J. Blandamer, J. Burgess, J. Fawcett, S. Radulovic, and D. r. Russell,Transition Met. Chem., accepted (TMC 1816).

  30. A. Al Alousy and J. Burgess,Transition Met. Chem., in press, (TMC 1776).

  31. M. J. Blandamer, J. Burgess, J. G. Chambers, and A. J. Duffield,Transition Met. Chem.,6, 156 (1981).

    Google Scholar 

  32. M. J. Blandamer, J. Burgess, and T. Digman,Transition Met. Chem.,10, 274 (1985).

    Google Scholar 

  33. R. bin Ali and J. Burgess, unpublished observations.

  34. F. Basolo,Coord. Chem. Rev.,3, 213 (1968).

    Google Scholar 

  35. A. G. Sykes and J. A. Weil,Progr. Inorg. Chem.,13, 1 (1970); M. Hancock, B. Nielsen, and J. Springborg,Inorg. Synth.,24, 220 (1986).

    Google Scholar 

  36. A. J. Leo, C. Hansch,and D. Elkins,Chem. Rev.,71, 525 (1971).

    Google Scholar 

  37. E. g., A. I. Shkadova,Farm, Zh. (Kiev),24, 39 (1969); P. Rohdewald,Pharm. Z.,38, 1342 (1971); A. Burger,Pharm. Ind.,35, 626 (1973); J. W. Mauger, H. Petersen, K. S. Alexander, and A. N. Paruta,Drug Dev. Ind. Pharm.,3, 163 (1977).

    Google Scholar 

  38. M. J. Clarke and L. Podbielski,Coord. Chem. Rev.,78, 253 (1987) {see,e.g., pp. 269, 273, 277, 287, 292, 304}; A. G. Jones, A. Davison, J. Kronauge, and M. J. Abrams,Chem. Abs.,107, 92826c (1987).

    Google Scholar 

  39. K. Burger,Solvation, Ionic and Complex Formation Reactions in Non-aqueous Solvents, Elsevier, 1983.

  40. S. Ahrland,Pure Appl. Chem.,54, 1451 (1982).

    Google Scholar 

  41. K. Bridger, R. C. Patel, and E. Matijevic,J. Phys. Chem.,87, 1192 (1983).

    Google Scholar 

  42. H. Doe and T. Kitagawa,Inorg. Chem.,21, 2272 (1982).

    Google Scholar 

  43. P. G. David,Polyhedron,4, 437 (1985).

    Google Scholar 

  44. C. Amuli, M. Elleb, J. Meullemeestre, M. J. Schwing, and F. Vierling,Inorg. Chem.,25, 856 (1986).

    Google Scholar 

  45. Y. Sasaki, K. Abe, and M. Takizawa,Bull. Chem. Soc. Jpn.,58, 1049 (1985).

    Google Scholar 

  46. Z. A. Saprykova and N. D. Chichirova,Russ. J. Inorg. Chem.,30, 527 (1985).

    Google Scholar 

  47. D. M. Muir, P. Singh, C. C. Kenna, N. Tsuchida, and M. D. Benari,Aust. J. Chem.,38, 1079 (1985).

    Google Scholar 

  48. C. K. Ingold,Structure and Mechanism in Organic Chemistry, Cornell University Press, 1953.

  49. A. J. Parker,Chem. Rev.,61, 1 (1969).

    Google Scholar 

  50. M. J. Blandamer and J. Burgess,Coord. Chem. Rev.,31, 93 (1980);Pure Appl. Chem.,51, 2087 (1979);Idem.,54, 2285 (1982);Idem.,55, 55 (1983).

    Google Scholar 

  51. E. Tommila and I. Palenius,Acta Chem. Scand.,17, 1980 (1963).

    Google Scholar 

  52. E. M. Woolley and L. G. Hepler,Analyt. Chem.,44, 1520 (1972); B. G. Cox, R. Natarajan, and W. E. Waghorne,J. Chem. Soc., Faraday Trans. I,75, 1780 (1979).

    Google Scholar 

  53. D. W. Margerum and L. P. Morgenthaler,J. Am. Chem. Soc.,84, 706 (1962).

    Google Scholar 

  54. M. J. Blandamer, J. Burgess, and D. L. Roberts,J. Chem. Soc., Dalton Trans., 1086 (1978).

  55. F. M. van Meter and H. M. Neumann,J. Am. Chem. Soc.,98, 1388 (1976).

    Google Scholar 

  56. M. J. Blandamer, J. Burgess, S. D. Cope, and T. Digman,Transition Met. Chem.,9, 347 (1984).

    Google Scholar 

  57. Seee.g., C. F. Wells,J. Chem. Soc., Faraday Trans. I,73, 1851 (1977); J. Burgess and M. G. Price,J. Chem. Soc. A, 3108 (1971); and refs. therein.

    Google Scholar 

  58. J. Bjerrum, A. W. Adamson, and O. Bostrup,Acta Chem. Scand.,10, 329 (1956).

    Google Scholar 

  59. J. Burgess,Spectrochim. Acta,26A, 1369 (1970).

    Google Scholar 

  60. H. Saito, J. Fujita, and K. Saito,Bull. Chem. Soc. Jpn.,41, 863 (1968).

    Google Scholar 

  61. A. Werner and A. Miolati,Z. Phys. Chem.,14, 506 (1894); A. Werner and R. Klein,Z. Anorg. Allg. Chem.,22, 111 (1899); A. Werner and C. Herty,Z. Phys. Chem.,38, 331 (1901).

    Google Scholar 

  62. A. Indelli and R. Zamboni,J. Chem. Soc., Faraday Trans. I,68, 1831 (1972); F. Kawaizumi, F. Nakao, and H. Nomura,J. Soln. Chem.,14, 688 (1985); J. K. Hovey and P. R. Tremaine,J. Phys. Chem.,89, 5541 (1985); K. Yoshitani,Bull. Chem. Soc. Jpn.,58, 1646 (1985); F. Kawaizumi, H. Nomura, and F. Nakao,J. Soln. Chem.,16, 133 (1987).

    Google Scholar 

  63. E.g., K. Kurotaki and S. Kawamura,J. Chem. Soc., Faraday Trans. I,77, 217 (1981).

    Google Scholar 

  64. R. van Eldik,Angew. Chem. Int. Edn. Engl.,25, 673 (1986); M. Kotowski and R. van Eldik, inInorganic High Pressure Chemistry—Kinetics and Mechanisms, Ed. R. van Eldik, Elsevier, 1986, Chap. 4 (seee.g., pp. 241–3).

    Google Scholar 

  65. K. Mizutani and M. Yasuda,Bull. Chem. Soc. Jpn.,55, 1317 (1982).

    Google Scholar 

  66. E. S. Yang, M.-S. Chan, and A. C. Wahl,J. Phys. Chem.,84, 3094 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blandamer, M.J., Burgess, J. Solvation of transition metal complexes: thermochemical approaches. Transition Met Chem 13, 1–18 (1988). https://doi.org/10.1007/BF01041490

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041490

Keywords

Navigation