Skip to main content
Log in

On the micromechanics of composites containing spherical inclusions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Exact solutions for the stress distribution inside a spherical inclusion embedded in an other-wise homogeneous matrix are obtained. Such expressions provide a framework for discussing the load carrying capacity of rubber inclusions and the effect of interfacial bonding on the toughness of such filled systems. Parametric studies of the influence of constituent stiffness ratios on the resultant stress patterns in the inclusion and matrix have been conducted. Results indicate that chemical bonding between the particle and matrix is not necessary for soft inclusions, but is essential for rigid inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Merz, G. C. Claver andM. Baer,J. Polym. Sci. 22 (1956) 325.

    Google Scholar 

  2. S. Newman andS. Strella,J. Appl. Polym. Sci. 9 (1965) 2297.

    Google Scholar 

  3. C. B. Bucknall andR. R. Smith,Polymer 6 (1965) 437.

    Google Scholar 

  4. D. C. Philips andB. Harris, in “Polymer Engineering Composites”, edited by M. O. W. Richardson (Applied Science, London, 1977) p. 45.

    Google Scholar 

  5. C. B. Bucknall, in “Toughened Plastics” (Applied Science, London, 1977) pp. 67–105.

    Google Scholar 

  6. R. R. Durst, R. M. Griffith, A. J. Urbanic andW. J. Van Essen, in “Toughness and Brittleness of Polymers”, edited by R. D. Deanin and A. M. Crugnola (American Chemical Society, Washington, D.C., 1976) p. 239.

    Google Scholar 

  7. S. J. Wu,J. Polym. Sci., Polym. Phys. Ed. 21 (1983) 699.

    Google Scholar 

  8. E. B. Nauman, U S Patent 4 594 371 (1986).

  9. E. B. Nauman et al. Chem. Engng Comm. 66 (1988) 29.

    Google Scholar 

  10. J. N. Goodier,J. Appl. Mech. 55 (1933) 39.

    Google Scholar 

  11. T. T. Wang, M. Matsuo andT. K. Kwei,J. Appl. Phys. 42 (1971) 4188.

    Google Scholar 

  12. T. T. Wang, M. Matsuo andT. K. Kwei,J. Polym. Sci. A2 (1972) 1085.

    Google Scholar 

  13. V. A. Matonis andN. C. Small,Polym. Engng Sci. 9 (1969) 90.

    Google Scholar 

  14. T. Ricco, A. Pavan andF. Danusso,ibid. 18 (1978) 774.

    Google Scholar 

  15. L. J. Broutman andG. Panizza,Intern. J. Polym. Mater. 1 (1971) 95.

    Google Scholar 

  16. A. E. H. Love in “A Treatise on the Mathematical Theory of Elasticity”, 4th edn (Dover Publications, New York, 1944) 172.

    Google Scholar 

  17. S. P. Timoshenko andJ. N. Goodier in “Theory of Elasticity”, 3rd edn (Mcgraw-Hill, New York, 1970) p. 383.

    Google Scholar 

  18. S. S. Sternstein andL. Ongchin,Polym. Prep. 10 (1969) 1117.

    Google Scholar 

  19. K. W. Allen,Brit. Polym. J. 11 (1979) 50.

    Google Scholar 

  20. S. Sahu andL. J. Broutman,J. Polym. Engng Sci. 12 (1972) 91.

    Google Scholar 

  21. L. Nicolais andL. Nicodemo,ibid. 13 (1973) 469.

    Google Scholar 

  22. J. Leidner andR. T. Woodhams,J. Appl. Polym. Sci. 18 (1974) 1639.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S.H., Nauman, E.B. On the micromechanics of composites containing spherical inclusions. J Mater Sci 25, 2071–2076 (1990). https://doi.org/10.1007/BF01045766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01045766

Keywords

Navigation