Skip to main content
Log in

Studies on the oxidation behavior of Inconel 625 between 873 and 1523 K

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of Inconel 625 during the early stages (<150 min) has been studied at oxygen pressures (PO 2) of 0.12 kPa (0.9 torr) and 101.3 kPa (760 torr) in the temperature range of 1323 K to 1523 K by using TGA and between 873 and 1523 K by using XPS, AES, and EDS. The TGA results correlated well with those obtained by surface analysis of the oxide films. The results of XPS and AES analysis suggested that two distinctly different oxidation mechanisms operate, depending on the temperature of oxidation. Enrichment of the oxide films with respect to Cr2O3 occurs above 873 K, the degree of enrichment peaking at about 1200 K such that the oxide films formed at temperatures close to this consist almost exclusively of Cr2O3. At temperatures above 1300 K, the oxides of two minor alloying components, Nb and Ti, have been found to be present in the oxide films in significant proportions. The results have been discussed on the basis of the relative thermodynamic stabilities of the competing oxide phases and the diffusivities of the alloying elements in Inconel 625.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Technology Forecast,Met. Progr. Jan., 44 (1981).

    Google Scholar 

  2. D. E. Wenschoff, Technical Service Memorandum, Huntington Alloy Products Division, The International Nickel Co., Huntington, West Virginia, 1974.

    Google Scholar 

  3. G. E. Wasielewski and R. A. Rapp, inThe Superalloys, C. T. Sims and W. C. Hagel, eds. (Wiley, New York, 1972), p. 287.

    Google Scholar 

  4. G. C. Wood,Oxid. Met. 2, 11 (1970).

    Google Scholar 

  5. K. N. Strafford, inConf. Proc. on High Temperature Alloys: Their Exploitable Potentials, J. B. Marriott, M. Merz, J. Nihoul, and J. Ward, eds. (Elsevier Applied Sci., Amsterdam, 1985), p. 53.

    Google Scholar 

  6. S. R. Smith, W. J. Carter III, G. D. Mateescu, F. J. Kohlm, G. C. Fryburg, and C. A. Stearns,Oxid. Met. 14, 415 (1980).

    Google Scholar 

  7. S. R. J. Saunders,Sci. Prog. Oxf. 63, 163 (1976).

    Google Scholar 

  8. N. Hussain, K. A. Shahid, I. H. Khan, and S. Rahman,Oxid. Met. 41, 251 (1994).

    Google Scholar 

  9. B. Pieraggi and R. A. Rapp,J. Electrochem. Soc. 140, 2844 (1993).

    Google Scholar 

  10. R. D. K. Mishra and R. Sivakumar,Oxid. Met. 25, 83 (1986).

    Google Scholar 

  11. Y. Saito, T. Inoue, T. Moruyama, and T. Amano,Boshoku Gijutsu 31, 109 (1982).

    Google Scholar 

  12. T. Walec,mater. Sci. Monogr. 10, 284 (1982).

    Google Scholar 

  13. G. Baran and A. R. McGhie, inInt. Conf. on Thermal Analysis, vol. 1, B. Miller, ed. (Wiley, Chichester, UK, 1982), p. 120.

    Google Scholar 

  14. F. H. Stott,Mater. Charact. 28, 311 (1992).

    Google Scholar 

  15. A. Strawbridge, F. H. Stott, and G. C. Wood,Corros. Sci. 35, 855 (1993).

    Google Scholar 

  16. A. S. Khanna, W. J. Quadakkers, X. Yang, and H. Schuster,Oxid. Met. 40, 275 (1993).

    Google Scholar 

  17. Y. Zhang and D. A. Shores,Oxid. Met. 40, 529 (1993).

    Google Scholar 

  18. P. Elliot and A. F. Hampton,Oxid. Met. 14, 449 (1980).

    Google Scholar 

  19. T. Amano and T. Taguchi,J. Alloys Compd. 193, 20 (1993).

    Google Scholar 

  20. F. Abe, H. Avaki, H. Yoshida, and M. Okada,Oxid. Met. 27, 21 (1987).

    Google Scholar 

  21. M. Durasso and R. L. Ramanathan,Congr. Anu. ABM 36, 353 (1981).

    Google Scholar 

  22. N. Hussain, G. Schanz, S. Leistikow, and K. A. Shahid,Oxid. Met. 32, 405 (1989).

    Google Scholar 

  23. H. J. Christ, L. Berchtold, and H. G. Sockel,Oxid. Met. 26, 45 (1986).

    Google Scholar 

  24. C. S. Giggins and F. S. Pettit,Trans. Metall., Soc. AIME 245, 2495 (1969).

    Google Scholar 

  25. S. Chattopadhyay and G. C. Wood,J. Electrochem. Soc. 117, 1176 (1970).

    Google Scholar 

  26. R. P. Abendroth,Met. Trans. 230, 1735 (1964).

    Google Scholar 

  27. N. S. McIntyre and D. G. Zetaruk,J. Vacuum Sci. Technol. 14, 181 (1977).

    Google Scholar 

  28. N. S. McIntyre, D. G. Zetaruk, and D. Owen,Appl. Surface Sci. 2, 55 (1978).

    Google Scholar 

  29. J. C. Langevoort, I. Sutherland, L. J. Hanckamp, and P. J. Gellings,Appl. Surface Sci. 28, 167 (1987).

    Google Scholar 

  30. K. S. Kim, W. E. Baitinger, J. W. Amy, and N. Winograd,J. Electron Spectrosc. Rel. Phenom. 5, 351 (1974).

    Google Scholar 

  31. M. Lenglet, R. Guillamet, J. Lopitaux, and B. Hannoyer,Mater. Res. Bull. 25, 715 (1990).

    Google Scholar 

  32. C. S. Tedmon, Jr.,J. Electrochem. Soc. 113, 766 (1966).

    Google Scholar 

  33. C. A. Stearns, F. J. Kohl, and G. C. Fryburg,J. Electrochem. Soc. 121, 945 (1974).

    Google Scholar 

  34. H. C. Graham and H. H. Davis,J. Am. Ceram. Soc. 54, 89 (1971).

    Google Scholar 

  35. L. B. Pankratz, J. M. Stuve and N. A. Gokcen,Thermodynamic Data for Mineral Technology (U.S. Bureau of Mines, Bull. No. 677, 1984).

  36. C. D. Wagner, M. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg (eds.),Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Minnesota, 1979).

    Google Scholar 

  37. K. S. Kim and R. E. Davis,J. Electron Spectrosc. Rel. Phenom. 1, 251 (1972).

    Google Scholar 

  38. C. Wagner,J. Electrochem. Soc. 113, 1245 (1952).

    Google Scholar 

  39. T. F. Chen, Y. Iijima, K. Hirano, and K. Yamauchi,J. Nucl. Mater. 169, 285 (1989).

    Google Scholar 

  40. J. B. Malherbe, S. Hofmann, and J. M. Sanz,Appl. Surface Sci. 27, 355 (1986).

    Google Scholar 

  41. C. Wagner,J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  42. R. V. Patil, K. Bhanumoorthy, and G. B. Kale, inProc. Int. Conf. Physical Metallurgy, Bombay, 1994, to be published.

  43. M. Sundararaman and P. Mukhopadhyay,Met. Mater. Proces. 3, 1 (1991).

    Google Scholar 

  44. G. Ben Abderrazik, G. Moulin, and A. M. Huntz,Oxid. Met. 33, 191 (1990).

    Google Scholar 

  45. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke,Oxid. Met. 37, 81 (1992).

    Google Scholar 

  46. W. C. Hagel and A. U. Seybolt,J. Electrochem. Soc. 108, 1146 (1961).

    Google Scholar 

  47. T. A. Ramanarayanan and R. Petkovic-Luton,Ber. Bunsen-Ges. Phys. Chem. 89, 402 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, L., Venkataramani, R., Sundararaman, M. et al. Studies on the oxidation behavior of Inconel 625 between 873 and 1523 K. Oxid Met 45, 221–244 (1996). https://doi.org/10.1007/BF01046827

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046827

Key Words

Navigation