Skip to main content
Log in

Hopf bifurcation from nonperiodic solutions of differential equations. I. Linear theory

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this and succeeding papers we consider some foundational elements of a theory of Hopf bifurcation from non-periodic solutions of ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Coddington, E., and Levinson, N. (1955).Theory of Ordinary Differential Equations, McGraw-Hill, New York.

    Google Scholar 

  • Coppel, W. (1978).Dichotomies in Stability Theory (Lecture Notes in Mathematics, vol. 629), Springer-Verlag, Berlin.

    Google Scholar 

  • De Concini, C., and Johnson, R. (1987). The algebraic-geometric AKNS potentials.Ergodic Theory and Dyn. Sys. 7, 1–24.

    Google Scholar 

  • Ellis, R. (1967).Lectures on Topological Dynamics, Benjamin, New York.

    Google Scholar 

  • Fal'ko, N. (1978). Almost-periodic systems with quasiperiodic coefficients.Differential Equations 14, 326–331.

    Google Scholar 

  • Giachetti, R., and Johnson, R. (1986). The Floquet exponent for two-dimensional linear systems with bounded coefficients.J. Math. Pures Appl. 65, 93–117.

    Google Scholar 

  • Golubitsky, M., and Schaefer, D. (1985).Singularities and Groups in Bifurcation Theory, Springer-Verlag, New York.

    Google Scholar 

  • Hopf, E. (1942). Abzweigung einer periodischen Lösung von einer stationÄren Lösung eines Differentialsystems.SÄchs. Akad. Wiss. Leipzig, Math-Phys. Klasse 94.

  • Hopf, E. (1955). Repeated branching through loss of stability: an example. InProceedings of the Conference on Differential Equations, Maryland.

  • Johnson, R. (1986). Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients.J. Differential Equations 61, 54–78.

    Google Scholar 

  • Johnson, R. (1987). Remarks on linear differential equations with measurable coefficients.Proc. Am. Math. Soc. 100, 491–504.

    Google Scholar 

  • Johnson, R., and Moser, J. (1982). The rotation number for almost-periodic potentials.Commun. Math. Phys. 84, 403–438.

    Google Scholar 

  • Johnson, R., and Yi, Y-F. (1989). Hopf bifurcation from nonperiodic solutions of differential equations. II.J. Dyn. Differential Equations 11 (in preparation).

  • Johnson, R., Palmer, K., and Sell, G. (1987). Ergodic properties of linear dynamical systems.SIAM J. Math. Anal. 18, 1–33.

    Google Scholar 

  • Katok, A. (1972). Minimal diffeomorphisms on a smooth S1 principal bundle. InAll-Union Conference in Topology, Tblisi [in Russian].

  • Kotani, S. (1982). Lyapounov indices determine absolutely continuous spectrum of stationary random Schrödinger operators. InStochastic Analysis, ed. by K. Ito, North-Holland, 1984, pp. 225–247.

  • Millionscikov, V. (1978). Typicality of almost-periodic systems with almost-periodic coefficients.Differential Equations 14, 448–449.

    Google Scholar 

  • Nemytskii, V., and Stepanov, V. (1960).Qualitative Theory of Differential Equations, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Newhouse, H., Ruelle, D., and Takens, F. (1978). Occurrence of strange axiom A attractors near quasi-periodic flows on Tm, m⩾3.Commun. Math. Phys. 64, 35–40.

    Google Scholar 

  • Novikov, V. (1974). On almost reducible systems with almost periodic coefficients.Math. Notes 16, 1065–1071.

    Google Scholar 

  • Oseledec, V. (1968). A multiplicative ergodic theorem: Lyapounov characteristic numbers for dynamical systems.Trans. Moscow Math. Soc. 19, 197–231.

    Google Scholar 

  • Palmer, K. (1987). Exponential dichotomies for almost periodic equations. University of Miami, Miami, Florida, preprint.

    Google Scholar 

  • Ruelle, D., and Takens, F. (1971). On the nature of turbulence.Commun. Math. Phys. 20, 167–192.

    Google Scholar 

  • Sacker, R. (1964). On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, PhD thesis, Courant Institute, New York University, New York.

    Google Scholar 

  • Sacker, R., and Sell, G. (1974). Existence of dichotomies and invariant splittings for linear differential equations. I.J. Differential Equations 15, 429–458.

    Google Scholar 

  • Sacker, R., and Sell, G. (1976). Existence of dichotomies and invariant splittings for linear differential system. III.J. Differential Equations 22, 497–522.

    Google Scholar 

  • Sacker, R., and Sell, G. (1978). A spectral theory for linear differential systems.J. Differential Equations 27, 320–358.

    Google Scholar 

  • Sacker, R., and Sell, G. (1980). The spectrum of an invariant submanifold.J. Differential Equations 38, 135–160.

    Google Scholar 

  • Schwarzmann, S. (1957). Asymptotic cycles.Ann. Math. 66, 270–284.

    Google Scholar 

  • Sell, G. (1979). Bifurcation of higher-dimensional tori.Arch. Rat. Mech. Anal. 69, 199–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R.A. Hopf bifurcation from nonperiodic solutions of differential equations. I. Linear theory. J Dyn Diff Equat 1, 179–198 (1989). https://doi.org/10.1007/BF01047830

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01047830

Key words

Navigation