Skip to main content
Log in

The oxidation behavior of Fe-20Cr alloy foils in a synthetic exhaust-gas atmosphere

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidation tests of rare-earth-modified and Ti-modified Fe−20Cr alloy foils, which are under consideration for catalytic converter supports, were performed in a synthetic exhaust-gas atmosphere (N2+H2O+CO2) between 900°C and 650°C. Between 900°C and 750°C, the rare earths had no effect on oxide growth rates while Ti increased growth rates. Oxide growth rates for the rareearth alloys at 800°C and 750°C are much lower than those found in the literature for oxidation of Fe−Cr alloys or pure Cr in O2-rich atmospheres. The slow growth rates for the rare-earth alloys agree with literature data for oxidation of stainless steels containing >20% Cr in wet atmospheres and are caused by growth of an oxide scale only one grain thick. At temperatures ≤700°C, Fe−20Cr alloys grow massive Fe oxides; however, this can be suppressed by adding rare earths or Ti. To ensure good oxide adherence, free sulfur must be eliminated in the alloy by tying it up with a reactive-element addition. Both Ti and the rare earths can be used to tie up S, but the rare earths are more effective. For converter applications, the optimum alloy composition may contain rare earths for good oxide adherence and a small amount of Ti to suppress growth of Fe-rich oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Sigler,Oxid. Met. 29, 21–43 (1988).

    Google Scholar 

  2. A. W. Funkenbusch, J. G. Smeggil, and N. S. Bornstein,Mat. Trans. 16A, 1164–1166 (1985).

    Google Scholar 

  3. J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein,Met. Trans. 17A, 923–932 (1986).

    Google Scholar 

  4. J. L. Smialek,Met. Trans. 18A, 164–167 (1987).

    Google Scholar 

  5. G. C. Wood and D. P. Whittle,Corros. Sci. 7, 763–782 (1967).

    Google Scholar 

  6. I. Kvernes, M. Oliveira, and P. Kofstad,Corros. Sci. 17, 237–252 (1977).

    Google Scholar 

  7. N. Birks and G. H. Meier,Introduction to High Temperature Oxidation of Metals (Edward Arnold, London, 1983), pp. 110–112.

    Google Scholar 

  8. N. Otsuka, Y. Shida, and H. Fujikawa,Oxid. Met. 32, 13–45 (1989).

    Google Scholar 

  9. Y. Ikeda and K. Nii,Trans. Nat. Res. Inst. Met. 26, 52–62 (1984).

    Google Scholar 

  10. C. T. Fujii and R. A. Meussner,J. Electrochem. Soc. 111, 1215–1221 (1964).

    Google Scholar 

  11. H. Hindam and D. P. Whittle,Oxid. Met. 18, 245–284 (1982).

    Google Scholar 

  12. E. J. Felten,J. Electrochem. Soc. 108, 490–495 (1961).

    Google Scholar 

  13. J. M. Francis and W. H. Whitlow,Corros. Sci. 5, 701–710 (1965).

    Google Scholar 

  14. E. Tsuzi,Met. Trans. 11A, 1965–1972 (1980).

    Google Scholar 

  15. G. C. Wood and J. Boustead,Corros. Sci. 8, 719–723 (1968).

    Google Scholar 

  16. F. I. Wei and F. H. Stott,Corros. Sci. 29, 839–861 (1989).

    Google Scholar 

  17. T. N. Rhys-Jones and H. J. Grabke,Mater. Sci. Technol. 4, 446–454 (1988).

    Google Scholar 

  18. D. R. Sigler,Oxid. Met. 32, 337–355 (1989).

    Google Scholar 

  19. I. Barin and O. Knacke,Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973).

    Google Scholar 

  20. I. Barin, O. Knacke, and O. Kubaschewski,Thermochemical Properties of Inorganic Substances Supplement (Springer-Verlag, Berlin, 1977).

    Google Scholar 

  21. K. C. Mills,Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides (Butterworths, London, 1974).

    Google Scholar 

  22. K. A. Gschneidner and N. Kippenhan,Thermochemistry of the Rare Earth Carbides, Nitrides, and Sulfides for Steelmaking (Rare Earth Information Center, Institute for Atomic Research, Iowa State University, Ames, Iowa, 1971).

    Google Scholar 

  23. J. F. Elliott, M. Gleiser, and V. Ramakrishna,Thermochemistry for Steelmaking, Vol. II (Addison-Wesley, Reading, MA, 1963), p. 520.

    Google Scholar 

  24. D. R. Sigler,Oxid. Met. 36, 57–80 (1991).

    Google Scholar 

  25. B.Pieraggi,Oxid. Met. 27, 177–185 (1987).

    Google Scholar 

  26. D. R. Sigler,Oxid. Met. 40, 555–583 (1993).

    Google Scholar 

  27. C. S. Tedmon,J. Electrochem. Soc. 114, 788–795 (1967).

    Google Scholar 

  28. G. C. Wood and D. P. Whittle,J. Electrochem. Soc. 115, 126–133 (1968).

    Google Scholar 

  29. D. Mortimer and W. B. A. Sharp,Br. Corros. J. 3, 61–67 (1968).

    Google Scholar 

  30. D. Caplan and G. I. Sproule,Oxid. Met. 9, 459–472 (1975).

    Google Scholar 

  31. E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 104, 334–338 (1957).

    Google Scholar 

  32. W. C. Hagel,Trans. ASM 56, 583–599 (1963).

    Google Scholar 

  33. C. S. Giggins and F. S. Pettit,Trans. Metall. Soc. AIME 245, 2495–2507 (1969).

    Google Scholar 

  34. C. A. Phalnikar, E. B. Evans, and W. M. Baldwin,J. Electrochem. Soc. 103, 429–438 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigler, D.R. The oxidation behavior of Fe-20Cr alloy foils in a synthetic exhaust-gas atmosphere. Oxid Met 46, 335–364 (1996). https://doi.org/10.1007/BF01048635

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048635

Key Words

Navigation