Skip to main content
Log in

Spatial organization in two-species annihilation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The spatial structure of reactants in the two-species annihilation reaction A+B→0 is described. In one dimension, we investigate the distribution of domain sizes and the distributions of nearest-neighbor distances between particles of the same and of opposite species. The latter two quantities are characterized by a new length scale which is intermediate to the domain size t1/2 and the typical interparticle spacing t1/4. A scaling argument suggests that the typical distance between particles of opposite species, or equivalently the gaps between domains, grows ast ζ, with ζ = 3/8 and 1/3, respectively, in spatial dimensiond=1 and 2. The average density profile of a single domain is spatially nonuniform, with the density decaying to zero linearly as the domain edge is approached. This behavior permits a determination of the distribution of nearest-neighbor distances of same-species reactants. The corresponding moments of this distribution exhibit multiscaling which involves geometric averages of different powers of the domain size and the interparticle spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zeldovich and A. A. Ovchinnikov,Chem. Phys. 28:215 (1978).

    Google Scholar 

  2. D. Toussaint and F. Wilczek,J. Chem. Phys. 78:2642 (1983).

    Google Scholar 

  3. K. Kang and S. Redner,Phys. Rev. Lett. 52:955 (1984);Phys. Rev. A 32:435 (1985).

    Google Scholar 

  4. G. Zumofen, A. Blumen, and J. Klafter,J. Chem. Phys. 82:3198 (1985).

    Google Scholar 

  5. M. Bramson and J. L. Lebowitz,Phys. Rev. Lett. 61:2397 (1988).

    Google Scholar 

  6. L. W. Anacker and R. Kopelman,Phys. Rev. Lett. 58:289 (1987); L.W. Anacker and R. Kopelman,J. Chem. Phys. 91:5555 (1987).

    Google Scholar 

  7. D. Ben-Avraham and C. R. Doering,Phys. Rev. A 38:3035 (1988).

    Google Scholar 

  8. K. Lindenberg, B. J. West, and R. Kopelman,Phys. Rev. Lett. 60:1777 (1988).

    Google Scholar 

  9. E. Clément, L. M. Sander, and R. Kopelman,Phys. Rev. A 39:6455 (1989).

    Google Scholar 

  10. F. Leyvraz and S. Redner,Phys. Rev. Lett. 66:2168 (1991).

    Google Scholar 

  11. L. Gálfi and Z. Rácz,Phys. Rev. A 38:3151 (1988).

    Google Scholar 

  12. Z. Jiang and C. Ebner,Phys. Rev. A 42:7483 (1990).

    Google Scholar 

  13. H. Taitlebaum, S. Havlin, J. E. Kiefer, B. Trus, and G. H. Weiss, preprint.

  14. P. Argyrakis and R. Kopelman,Phys. Rev. A 41:2121 (1990).

    Google Scholar 

  15. M. Bramson and D. Griffeath,Z. Wahrsch. Verw. Gebiete 53:183 (1980); D. C. Torney and H. M. McConnell,Proc. R. Soc. Lond. A 387:147 (1983); A.A. Lushnikov,Sov. Phys. JETP 64:811 (1986); J. L. Spouge,Phys. Rev. Lett. 60:873 (1988).

    Google Scholar 

  16. C. R. Doering and D. Ben-Avraham,Phys. Rev. A 38:3035 (1988); D. ben-Avraham, M. A. Burschka, and C. R. Doering,J. Stat. Phys. 60:695 (1990).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz,Quantum Mechanics (Pergamon Press, New York, 1977).

    Google Scholar 

  18. G. H. Weiss, S. Havlin, and R. Kopelman,Phys. Rev. A 39:466 (1989); S. Havlin, H. Larralde, R. Kopelman, and G. H. Weiss,Physica A 169:337 (1990).

    Google Scholar 

  19. S. Redner and D. Ben-Avraham,J. Phys. A 23:L1169 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redner, S., Leyvraz, F. Spatial organization in two-species annihilation. J Stat Phys 65, 1043–1056 (1991). https://doi.org/10.1007/BF01049597

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049597

Key words

Navigation