Skip to main content
Log in

Fusion-neutron production in the TFTR with Deuterium neutral-beam injection

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

We report measurements of the fusion reaction rate in the Tokamak Fusion Test Reactor (TFTR) covering a wide range of plasma conditions and injected neutral-beam powers up to 6.3 MW. The fusion neutron production rate in beam-injected plasmas decreases slightly with increasing plasma density ne, even though the energy confinement parameter neτE generally increases with density. The measurements indicate and Fokker-Planck simulations show that with increasing density the source of fusion neutrons evolves from mainly beam-beam and beam-target reactions at very low ne to a combination of beam-target and thermonuclear reactions at high ne. At a given plasma current, the reduction in neutron source strength at higher ne is due to both a decrease in electron temperature and in beam-beam reaction rate. The Fokker-Planck simulations also show that at low ne, plasma rotation can appreciably reduce the beam-target reaction rate for experiments with coinjection only. The variation of neutron source strength with plasma and beam parameters is as expected for beam-dominated regimes. However, the Fokker-Planck simulations systematically overestimate the measured source strength by a factor of 2–3; the source of this discrepancy has not yet been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Dawsonet al., Phys. Rev. Lett. 26:1156 (1971).

    Google Scholar 

  2. P. C. Efthimionet al., Phys. Rev. Lett. 52:1492 (1984) (Ohmic heating results). K. M. Younget al..Plasma Phys. 26:11 (1984). M. Murakamiet al., Fusion Technol. 8:657 (1985) (NBI results).

    Google Scholar 

  3. D. L. Jassby,Nucl. Fusion 17:305 (1977).

    Google Scholar 

  4. L. Spitzer Jr.,Physics of Fully Ionized Gases, 2nd ed. (John Wiley & Sons, New York, 1962), p. 134.

    Google Scholar 

  5. J. D. Strachanet al., Nucl. Fusion 21:67 (1981).

    Google Scholar 

  6. H. W. Hendelet al. Proceedings of the Fourth ASTM-Euratom Symposium on Reactor Dosimetry (National Bureau of Standards, Washington, DC, 1982), CONF-820321/V2, p. 94.

    Google Scholar 

  7. E. B. Nieschmidtet al, Rev. Sci. Instr. 56:1084 (1985).

    Google Scholar 

  8. N. Jarmie and R. E. Brown,Nucl. Inst. Methods B10/11:405 (1985).

    Google Scholar 

  9. W. W. Heidbrink, private communication.

  10. L. P. Kuet al., Princeton Plasma Physics Laboratory PPPL-2244 (1985). Note that approximately fifty percent of the neutrons in the source energy group are scattered neutrons (private communication with L. P. Ku).

  11. H. W. Hendel,IEEE Transact. Nucl. Sci. 33:670 (1986).

    Google Scholar 

  12. H. H. Towneret al., Bull. Am. Phys. Soc. 28:1252 (1983).

    Google Scholar 

  13. M. Bitteret al., Phys. Rev. A. 32:3011 (1985).

    Google Scholar 

  14. M. Murakamiet al., Plasma Phys. Control. Fusion 28:1A, 17 (1986).

    Google Scholar 

  15. J. Killeenet al., Modern Plasma Physics (IAEA, Vienna, 1981), p. 395.

    Google Scholar 

  16. A. A. Mirin and D. L. Jassby,IEEE Trans. Plasma Sci. PS-8:503 (1980). R. D. Gillet al., Plasma Phys. Contr. Fusion 26:1B, 341 (1984).

    Google Scholar 

  17. A. H. Futchet al., Plasma Phys. 14:211 (1972). (This fit is due to earlier unpublished work by A. Winslow, 1958, L.L.N.L. Recent work by G. M. Hale, LASL, gives additional credence to Winslow's fit. See Ref. 8.).

    Google Scholar 

  18. G. H. Mileyet al., University of Illinois, C-U Campus, COO-2218-17 (1974). (This fit is due to earlier work by D. H. Duane, see BNWL-1685, 1972.).

  19. P. C. Efthimionet al., presented at The 10th International Conference, London, 1984,Plasma Physics and Controlled Nuclear Fusion Research 1984 (IAEA, Vienna, 1985), Vol. I, p. 29.

    Google Scholar 

  20. G. L. Schmidtet al., Proceedings of 12th European Conference on Controlled Fusion and Plasma Physics (Budapest, Hungary, 1985), Vol. 2, p. 674.

    Google Scholar 

  21. K. Brauet al. Nucl. Fusion 23:1643 (1983).

    Google Scholar 

  22. K. W. Hillet al., Rev. Sci. Instr. 56:1165 (1985).

    Google Scholar 

  23. S. S. Medleyet al., Proceedings of 12th European Conference on Controlled Fusion and Plasma Physics (Budapest, Hungary, 1985), Vol. 1, p. 343.

    Google Scholar 

  24. M. Fois, Equipe TFRProceedings of 13th Conference on Controlled Fusion and Plasma Heating (Schliersee, West Germany, 1986).

  25. R. Kaitaet al., Princeton Plasma Physics PPPL-2321 (1986).

  26. C. D. Boleyet al., Phys. Rev. Lett. 52:534 (1984).

    Google Scholar 

  27. L. R. Grisham, private communication.

  28. H. K. Burrellet al., presented at 10th International Conference, London (1984),Plasma Physics and Controlled Nuclear Fusion Research 1984 (IAEA, Vienna, 1985), Vol. I, p. 131.

    Google Scholar 

  29. D. L. Hilliset al., Bull. Amer. Phys. Soc. 30:1521 (1985). A. Chan and J. D. Strachan,Bull. Am. Phys. Soc. 30:1522 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from RCA David Sarnoff Research Center, Princeton, New Jersey 08540.

On assignment from Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831.

On leave from Idaho National Engineering Laboratory, EG&G Idaho, Inc., Idaho Falls, Idaho 83415.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendel, H.W., England, A.C., Jassby, D.L. et al. Fusion-neutron production in the TFTR with Deuterium neutral-beam injection. J Fusion Energ 5, 231–244 (1986). https://doi.org/10.1007/BF01050616

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050616

Key words

Navigation