Skip to main content
Log in

Structural variation in the glycoinositolphospholipids of different strains ofTrypanosoma cruzi

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The structures of the glycoinositolphospholipids (GIPLs) from five strains of the protozoan parasiteTrypanosoma cruzi have been determined. Two series of structures were identified, all but one containing the same Man4(AEP)GlcN-Ins-PO4 core. Series 1 oligosaccharides are substituted at the third mannose distal to inositol (Man 3) by ethanolamine-phosphate or 2-aminoethylphosphonic acid, as are some glycosyl-phosphatidylinositol-protein anchors ofT. cruzi. The core can be further substituted by terminal (1–3)-linked β-galactofuranose units. In contrast, Series 2 oligosaccharides do not have additional phosphorus-containing groups attached to Man 3, the latter being substituted instead by a single side chain unit of β-galactofuranose. Series 1 oligosaccharides are present in all strains (G, G-645, Tulahuen CL, and Y) whereas Series 2 structures are present mainly in CL and Y strains. The lipid moiety in the GIPLs from the G, G-645 and Tulahuen strains is predominantly ceramide, as reported for the Y strain, whilst that from the CL strain is a mixture of ceramide and alkylacylglycerol species. The lipid moiety of the GIPLs, and probably also the phosphoinositol-oligosaccharide structures may play an important immunomodulatory role in infection byT. cruzi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GIPL:

glycoinositolphospholipid

LPPG:

lipopeptidophosphoglycan

GPI:

glycosylphosphatidylinositol

AEP:

2-aminoethylphosphonic acid

PI:

phosphoinositol

GC:

gas-liquid chromatography

MS:

mass spectrometry

FAB:

fast atom bombardment

NMR:

nuclear magnetic resonance

DQF-COSY:

double quantum-filtered correlation spectroscopy

TOCSY:

total correlation spectroscopy

ROESY:

rotating frame nuclear Overhauser enhancement spectroscopy

EtNP:

ethanolaminephosphate

HMQC:

heteronuclear multiple quantum coherence

Man:

mannose

Galf :

galactofuranose

GlcN:

glucosamine

Ins:

inositol

InsP:

inositolphosphate

Man 3:

third mannose distal to inositol

NOE:

nuclear Overhauser effect

[M+H]+ :

protonated molecule

[M−H] :

deprotonated molecule

RMM:

relative molecular mass (monoisotopic)

References

  1. Brener Z (1973)Annu Rev Microbiol 27: 347–82.

    PubMed  Google Scholar 

  2. Burleigh BA, Andrews NW (1995)Annu Rev Microbiol 49: 175–200.

    PubMed  Google Scholar 

  3. Sher A, Snary D (1982)Nature 300: 636–40.

    Google Scholar 

  4. Kipnis TL, David JR, Alper CA, Sher A, Dias da Silva W (1981)Proc Natl Acad Sci USA 78: 602–5.

    PubMed  Google Scholar 

  5. Almeida IC, Ferguson MAJ, Schenkman S, Travassos LR (1994)Biochem J 304: 793–802.

    PubMed  Google Scholar 

  6. Gomes NA, Previato JO, Zingales B, Mendonça-Previato L, DosReis GA (1996)J Immunol 156: 628–35.

    PubMed  Google Scholar 

  7. Previato JO, Gorin PAJ, Mazurek M, Xavier MT, Fournet B, Wieruszesk JM, Mendonça-Previato L (1990)J Biol Chem 265: 2518–26.

    PubMed  Google Scholar 

  8. Lederkremer RM, Lima C, Ramirez MI, Ferguson MAJ, Homans SW, Thomas-Oates J (1991)J Biol Chem 266: 23670–5.

    PubMed  Google Scholar 

  9. Lederkremer RM, Alves MTM, Fonseca GC, Colli W (1976)Biochem Biophys Acta 444: 85–96.

    PubMed  Google Scholar 

  10. Previato JO, Jones C, Xavier MT, Wait R, Travassos LR, Parodi AJ, Mendonça-Previato L (1995)J Biol Chem 270: 7241–50.

    PubMed  Google Scholar 

  11. McConville MJ, Ferguson MAJ (1993)Biochem J 294: 305–24.

    PubMed  Google Scholar 

  12. Previato JO, Jones C, Gonçalyes LPB, Wait R, Travassos LR, Mendonça-Previato L (1994)Biochem J 301: 151–9.

    PubMed  Google Scholar 

  13. Previato JO, Andrade AFB, Pessolani MCV, Mendonça-Previato L (1985)Mol Biochem Parasitol 16: 85–96.

    PubMed  Google Scholar 

  14. Schenkman S, Ferguson MAJ, Heise N, Cardoso de Almeida ML, Mortara RA, Yoshida N (1993)Mol Biochem Parasitol 59: 293–304.

    PubMed  Google Scholar 

  15. Acosta A, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MAJ (1995)J Biol Chem 270: 27244–53.

    PubMed  Google Scholar 

  16. Schofield L, Hackett F (1993)J Exp Med 177: 145–53.

    PubMed  Google Scholar 

  17. Brener Z (1980)Adv Parasitol 18: 247–92.

    PubMed  Google Scholar 

  18. Brener Z (1994)Ci Cult J Brazilian Ass Adv Sci 46: 328–32.

    Google Scholar 

  19. Smith SW, Lester RL (1974)J Biol Chem 249: 3395–405.

    PubMed  Google Scholar 

  20. Humbel R, Collaert M (1975)Clin Chim Acta 60: 143–5.

    PubMed  Google Scholar 

  21. Toenies G, Kolb JJ (1951)Anal Chem 23: 823–6.

    Google Scholar 

  22. Burrows S, Grylls SM, Harrison JS (1952)Nature 170: 800–1.

    Google Scholar 

  23. Carter HE, Gaver RC (1967)Biochem Biophys Res Commun 29: 886–91.

    Google Scholar 

  24. Schneider P, Ferguson MAJ (1995)Methods Enzymol 250: 614–30.

    PubMed  Google Scholar 

  25. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956)Anal Chem 28: 350–6.

    Google Scholar 

  26. Ames BN (1966)Methods Enzymol 8: 115–8.

    Google Scholar 

  27. Bartlett GR (1959)J Biol Chem 134: 466–8.

    Google Scholar 

  28. Lauter CJ, Trams EG (1962)J Lipid Res 3: 136–8.

    Google Scholar 

  29. Previato JO, Mendonça-Previato L, Jones C, Wait R, Fournet B (1992)J Biol Chem 267: 24279–86.

    PubMed  Google Scholar 

  30. Wait R, Jones C, Routier FH, Previato JO, Mendonça-Previato L (1994)Org Mass Spectrom 29: 767–81.

    Google Scholar 

  31. Redman CA, Schneider P, Mehlert A, Ferguson MAJ (1995)Biochem J 311: 495–503.

    PubMed  Google Scholar 

  32. Fernandes AP, Nelson K, Beverley SM (1993)Proc Natl Acad Sci USA 90: 11608–12.

    PubMed  Google Scholar 

  33. Maslov DA, Simpson L (1995)Parasitol Today 11: 30–2.

    Google Scholar 

  34. Conzelmann A, Puoti A, Lester EL, Desponds C (1992)EMBO J 11: 457–66.

    PubMed  Google Scholar 

  35. Lederkremer RM, Lima CE, Ramirez MI, Gonçalves MF, Colli W (1993)Eur J Biochem 218: 929–36.

    PubMed  Google Scholar 

  36. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993)Science 259: 1769–71.

    PubMed  Google Scholar 

  37. Pushkareva M, Obeid LM, Hannun YA (1995)Immunol Today 16: 294–7.

    PubMed  Google Scholar 

  38. Alcantara A, Brener B (1978)Acta Trop 35: 209–19.

    PubMed  Google Scholar 

  39. Minoprio P, Itohara S, Heusser C, Tonegawa S, Coutinho A (1989)Immunol Rev 112: 183–207.

    PubMed  Google Scholar 

  40. Russo M, Starobinas N, Ribeiro dos Santos R, Minoprio P, Eisen H, Houtebeyrie-Joskowicz (1989)Parasite Immunol 11: 385–95.

    PubMed  Google Scholar 

  41. Routier F, Previato JO, Jones C, Wait R, Mendonça-Previato L (1993)Ci Cult J Brazilian Ass Adv Sci 45: 66–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carreira, J.C., Jones, C., Wait, R. et al. Structural variation in the glycoinositolphospholipids of different strains ofTrypanosoma cruzi . Glycoconjugate J 13, 955–966 (1996). https://doi.org/10.1007/BF01053191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053191

Keywords

Navigation