Skip to main content
Log in

A maximum-entropy principle for two-dimensional perfect fluid dynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We use Kullback entropy for Young measures to define statistical equilibrium states for a two-dimensional incompressible flow of a perfect fluid. This approach is justified, as it gives a concentration property about the equilibrium state in the phase space. It might give a statistical understanding of the appearance of coherent structures in two-dimensional turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio and A. Cruzerio, Global flows with invariant Gibbs measures for Euler and Navier-Stokes two-dimensional fluids,Commun. Math. Phys. 129:431–444 (1990).

    Google Scholar 

  2. S. Albeverio, M. Ribeiro de Faria, and R. Hoegh Krohn, Stationary measures for the periodic Euler flow in two dimensions,J. Stat. Phys. 20:585–595 (1979).

    Google Scholar 

  3. V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,Ann. Inst. Fourier 16:319–361 (1966).

    Google Scholar 

  4. V. I. Arnold, On ana priori estimate in the theory of hydrodynamical stability,Am. Math. Soc. Transl. 79:267–269 (1969).

    Google Scholar 

  5. R. Azencott, Grandes déviations et applications, inEcole d'été de Probabilités de Saint-Flour, VIII Lecture Notes in Mathematics, No. 774 (Springer, Berlin, 1978).

    Google Scholar 

  6. P. Baldi, Large deviations and stochastic homogenization,Ann. Mat. Pura Appl. 4(151):161–177 (1988).

    Google Scholar 

  7. C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux,J. Math. Anal. Appl. 40:769–790 (1972).

    Google Scholar 

  8. C. Boldrighini and S. Frigio, Equilibrium states for a plane incompressible perfect fluid,Commun. Math. Phys. 72:55–76 (1980).

    Google Scholar 

  9. B. Castaing, Conséquences d'un principe d'extremum en turbulence,J. Phys. (Paris)50:147–156 (1989).

    Google Scholar 

  10. G. H. Cottet, Analyse numérique des méthodes particulaires pour certains problèmes non linéaires, Thèse, Université Paris VI (1987).

  11. G. S. Deem and N. J. Zabusky, Vortex waves: Stationary V-states, interactions, recurrence, and breaking,Phys. Rev. Lett. 40:859–862 (1978).

    Google Scholar 

  12. T. Dumont and M. Schatzman, to appear.

  13. R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer-Verlag, 1985).

  14. J. Fröhlich and D. Ruelle, Statistical mechanics of vortices in an inviscid two dimensional fluid,Commun. Math. Phys. 87:1–36 (1982).

    Google Scholar 

  15. E. J. Hopfinger, Turbulence and vortices in rotating fluids, inProceedings of the XVIIth International Congress of Theoretical and Applied Mechanics (North-Holland, Amsterdam, 1989).

    Google Scholar 

  16. E. T. Jaynes, Where do we go from here? inMaximum Entropy and Bayesian Methods in Inverse Problems, C. Ray Smith and W. T. Grandy, eds. (Reidel, 1985).

  17. M. Jirina, On regular conditional probabilities,Czech. Math. J. 9:445 (1959).

    Google Scholar 

  18. T. Kato, On the classical solutions of the two-dimensional non stationary Euler equation,Arch. Rat. Mech. Anal. 25:302–324 (1967).

    Google Scholar 

  19. R. H. Kraichnan, Statistical dynamics of two-dimensional flow,J. Fluid Mech. 67:155–175 (1975).

    Google Scholar 

  20. R. H. Kraichnan and D. Montgomery,Rep. Prog. Phys. 43:547 (1980).

    Google Scholar 

  21. T. D. Lee,Q. Appl. Math. 10:69 (1952).

    Google Scholar 

  22. C. E. Leith, Minimum enstrophy vortices,Phys. Fluids 27:1388–1395 (1984).

    Google Scholar 

  23. J. Michel and R. Robert, To appear.

  24. J. Miller, Statistical mechanics of Euler equations in two dimensions,Phys. Rev. Lett. 65:2137–2140 (1990).

    Google Scholar 

  25. D. Montgomery, Maximal entropy in fluid and plasma turbulence, inMaximum Entropy and Bayesian Methods in Inverse Problems, C. Ray Smith and W. T. Grandy, eds. (Reidel, 1985).

  26. J. M. Nguyen Duc and J. Sommeria, Experimental characterization of steady two-dimensional vortex couples,J. Fluid Mech. 192:175–192 (1988).

    Google Scholar 

  27. E. A. Novikov, Dynamics and statistics of a system of vortices,Sov. Phys. JETP 41:937–943 (1976).

    Google Scholar 

  28. P. J. Olver,Applications of Lie Groups to Differential Equations (Springer-Verlag, 1986).

  29. L. Onsager, Statistical hydrodynamics,Nuovo Cimento Suppl. 6:279 (1949).

    Google Scholar 

  30. E. A. Overman and N. J. Zabusky, Evolution and merging of isolated vortex structures,Phys. Fluids 25:1297 (1982).

    Google Scholar 

  31. Y. B. Poitin and T. S. Lundgren, Statistical mechanics of two dimensional vortices in a bounded container,Phys. Fluids 10:1459–1470 (1976).

    Google Scholar 

  32. R. Robert, Concentration et entropie pour les mesures d'Young,C. R. Acad. Sci. Paris Ser. I 309:757–760 (1989).

    Google Scholar 

  33. R. Robert, Concentration and entropy for Young measures, Preprint, Laboratoire d'analyse numérique de Lyon, no. 85 (1989).

  34. R. Robert, Etats d'équilibre statistique pour l'écoulement bidimensionnel d'un fluide parfait,C. R. Acad. Sci. Paris Ser. I 311:575–578 (1990).

    Google Scholar 

  35. R. Robert and J. Sommeria, Statistical equilibrium states for two-dimensional flows,J. Fluid Mech., to appear.

  36. P. G. Saffman and G. R. Baker, Vortex interactions,Annu. Rev. Fluid Mech. 11:95–122 (1979).

    Google Scholar 

  37. D. Serre, Les invariants du premier ordre de l'équation d'Euler en dimension trois,Physica 13D:105–136 (1984).

    Google Scholar 

  38. J. Sommeria and M. A. Denoix, to appear.

  39. J. Sommeria, S. D. Meyers, and H. L. Swinney, Laboratory simulation of Jupiter's Great Red Spot,Nature 331:1 (1988).

    Google Scholar 

  40. J. Sommeria, C. Nore, T. Dumont, and R. Robert, Théorie statistique de la tache rouge de Jupiter,C. R. Acad. Sci. Paris Ser. II 312:999–1005 (1991).

    Google Scholar 

  41. J. Sommeria, C. Staquet, and R. Robert, Final equilibrium state of a two-dimensional shear layer,J. Fluid Mech., to appear.

  42. V. I. Youdovitch, Non stationary flow of an ideal incompressible liquid,Zh. Vych. Mat. 3:1032–1066 (1963).

    Google Scholar 

  43. L. C. Young, Generalized surfaces in the calculus of variations,Ann. Math. 43:84–103 (1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, R. A maximum-entropy principle for two-dimensional perfect fluid dynamics. J Stat Phys 65, 531–553 (1991). https://doi.org/10.1007/BF01053743

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053743

Key words

Navigation