Skip to main content
Log in

Rate-limiting barriers to intestinal drug absorption: A review

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The intestinal epithelium is composed of several structures that could serve as barriers to the transfer of drugs from the GI lumen to the systemic circulation. An aqueous stagnant layer that overlies the apical membrane and the subepithelial blood flow are potential barriers to the absorption of drugs that readily penetrate the absorbing cell of the epithelium. The apical, basal, and basement membranes are potential barriers to the absorption of less permeable drugs. The cytoplasm of the absorbing cell is a relatively thick barrier that must also be traversed. While the location and structure of these potential barriers are well known, those barriers that are operative and the kinds of molecules for which they are operative are not known. The structure and permeability properties of the potential barriers are considered, along with the roles of the paracellular pathway and countercurrent exchange in the villus circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Trier. Morphology of the epithelium of the small intestine. In W. Heidel and C. F. Code (eds.),Handbook of Physiology, Sect. 6:Alimentary Canal, Vol. III:Intestinal Absorption, American Physiological Society, Washington, D.C., 1968, pp. 1125–1175.

    Google Scholar 

  2. J. D. Gardner, M. S. Brown, and L. Laster, The columnar epithelial cell of the small intestine: Digestion and transport.New Engl. J. Med. 283:1196–1202, 1264–1271, 1317–1324 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. W. Specht. Morphology of the intestinal wall. In M. Kramer and F. Lauterbach (eds.),Intestinal Permeation, Excerpta Medica, Amsterdam-Oxford, 1977, pp. 4–40.

    Google Scholar 

  4. K. R. Spring and A. Hope. Size and shape of the lateral intercellular spaces in a living epithelium.Science 200:54–57 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. J. M. Diamond. Tight and leaky junctions of epithelia: A perspective on kisses in the dark.Fed. Proc. 33:2220–2224 (1974).

    CAS  PubMed  Google Scholar 

  6. J. Fishbarg, C. R. Warshavsky, and J. J. Lim. Pathways for hydraulically and osmoticallyinduced water flows across epithelia.Nature 266:71–74 (1977).

    Article  Google Scholar 

  7. B. G. Munck and S. N. Rasmussen. Paracellular permeability of extracellular space markers across rat jejunumin vitro: Indication of a transepithelial fluid circuit.J. Physiol. (London) 271:473–488 (1977).

    Article  CAS  Google Scholar 

  8. F. A. Wilson, V. L. Sallee, and J. M. Dietschy. Unstirred water layers in intestine: Rate determinant of fatty acid absorption from micellar solutions.Science 174:1031–1033 (1971).

    Article  CAS  PubMed  Google Scholar 

  9. W. R. Lieb and W. D. Stein. The influence of unstirred layers on the kinetics of carrier-mediated transport.J. Theor. Biol. 36:641–645 (1972).

    Article  CAS  PubMed  Google Scholar 

  10. D. Winne. Unstirred layer thickness in perfused rat jejunumin vivo.Experientia 32:1278–1279 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. V. L. Sallee and J. M. Dietschy. Determinants of intestinal mucosal uptake of short- and medium-chain fafty acids and alcohols.J. Lipid Res. 14:475–484 (1973).

    CAS  PubMed  Google Scholar 

  12. A. Wilson and J. M. Dietschy. The intestinal unstirred layer: Its surface area and effect on active transport kinetics.Biochim. Biophys. Acta 363:112–126 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. R. B. Fisher and M. L. G. Gardner. A kinetic approach to the study of absorption of solutes by isolated perfused small intestine.J. Physiol. (London) 241:211–234 (1974).

    Article  CAS  Google Scholar 

  14. D. Winne. Dependence of intestinal absorptionin vivo on the unstirred layer.Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 304:175–181 (1978).

    Article  CAS  Google Scholar 

  15. J. F. Forstner, I. Jabbal, and G. G. Forstner. Goblet cell mucin of rat small intestine. Chemical and physical characterization.Can. J. Biochem. 51:1154–1166 (1973).

    Article  CAS  PubMed  Google Scholar 

  16. J. J. Skillman, S. A. Gould, R. S. K. Chung, and W. Silen. The gastric mucosal barrier: Clinical and experimental studies in critically ill and normal man, and in the rabbit.Ann. Surg. 172:564–582 (1970).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. K. Kowalewski, G. Chmura, C. Dent, and J. Schier. Experimental deficiency of the gastric “muscous barrier”.Am. J. Dig. Dis. 14:788–796 (1969).

    Article  CAS  PubMed  Google Scholar 

  18. M. P. Braybrooks, B. W. Barry, and E. T. Abbs. The effect of mucin on the bioavailability of tetracycline from the gastrointestinal tract;in vivo, in vitro correlations.J. Pharm. Pharmacol. 27:508–515 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. I. W. Kellaway and C. Marriot. The influence of mucin on the bioavailability of tetracycline.J. Pharm. Pharmacol. 27:281–283 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. R. R. Levine, M. R. Blair, and B. B. Clark. Factors influencing the intestinal absorption of certain monoquaternary anticholinergic compounds with special reference to benzomethamine [N-diethylamineothyl-N-methyl-benzilamide methobromide (MC-3199)]J. Pharmacol. Exp. Ther. 114:78–86 (1955).

    CAS  PubMed  Google Scholar 

  21. B. Sandström. A contribution to the concept of brush border function: Observations on intestinal epithelium in tissue culture.Cytobiologie 3:293–297 (1971).

    Google Scholar 

  22. M. L. Lucas, W. Schneider, F. J. Haberich, and J. Blair. Direct measurement bypH-microelectrode of thepH microclimate in rat proximal jejunum.Proc. Roy. Soc. London Ser. B 192:39–48 (1975).

    Article  CAS  Google Scholar 

  23. C. A. M. Hogben, D. J. Tocco, B. B. Brodie, and L. S. Schanker. On the mechanism of intestinal absorption of drugs.J. Pharmacol. Exp. Ther. 125:275–282 (1959).

    CAS  PubMed  Google Scholar 

  24. F.-H. Lei, M. L. Lucas, and J. A. Blair. The influence ofpH, low sodium ion concentration and methotrexate on the jejunal-surfacepH: A model for folic acid transfer.Biochem. Soc. Tr. 5:149–152 (1977).

    CAS  Google Scholar 

  25. S. K. Swanston, J. A. Blair, A. J. Matty, B. T. Cooper, and W. T. Cooke. Changes in the jejunal glycocalyx and their relationship to intestinal malabsorption.Biochem. Soc. Tr. 5:152 (1977).

    Google Scholar 

  26. M. S. Bretscher. Membrane structure: Some general principles.Science 181:622–629 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. J. E. Rothman and J. Lenard. Membrane asymmetry.Science 195:743–753 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. J. DeGier, J. G. Mandersloot, J. V. Hupkes, R. N. McElhaney, and W. P. Van Beek. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes.Biochim. Biophys. Acta 233:610–618 (1971).

    Article  CAS  Google Scholar 

  29. E. Gallucci, S. Micelli, and C. Lippe. Non-electrolyte permeability across thin lipid membranes.Arch. Int. Physiol. Biochim. 79:881–887 (1971).

    Article  CAS  PubMed  Google Scholar 

  30. W. R. Lieb and W. D. Stein. Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes.Nature 224:240–243 (1969).

    Article  CAS  PubMed  Google Scholar 

  31. W. R. Lieb and W. D. Stein. Implications of two different types of diffusion for biological membranes.Nature 234:220–222 (1971).

    CAS  Google Scholar 

  32. M. Poznansky, S. Tong, P. C. White, J. M. Milgram, and A. K. Solomon. Nonelectrolyte diffusion across lipid bilayer systems.J. Gen. Physiol. 67:45–66 (1976).

    Article  CAS  PubMed  Google Scholar 

  33. M. J. Jackson and L. M. Kutcher. The three-compartment system for transport of weak electrolytes in the small intestine. In M. Kramer and F. Lauterbach (eds.),Intestinal Permeation, Excerpta Medica, Amsterdam-Oxford, 1977, pp. 65–73.

    Google Scholar 

  34. N. R. Strahl and W. H. Barr. Intestinal drug absorption and metabolism. III. Glycine conjugation and accumulation of benzoic acid in rat intestinal tissue.J. Pharm. Sci. 60:278–281 (1971).

    Article  CAS  PubMed  Google Scholar 

  35. C. F. Hazlewood. Bound water in biology.Acta Biochim. Biophys. 12:263–273 (1977).

    CAS  Google Scholar 

  36. O. Hechter. Intracellular water structure and mechanisms of cellular transport.Ann. N. Y. Acad. Sci. 195:625–646 (1972).

    Article  Google Scholar 

  37. G. N. Ling. A new model for the living cell: A summary of the theory and recent experimental evidence in its support.Int. Rev. Cytol. 26:1–61 (1969).

    Article  CAS  PubMed  Google Scholar 

  38. G. N. Ling. What component of the living cell is responsible for its semipermeable properties? Polarized water or lipids?Biophys. J. 13:807–816 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. R. N. McElhaney. Membrane lipid, not polarized water, is responsible for the semipermeable properties of living cells.Biophys. J. 15:777–784 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. M. N. Eade. Gut circulation and absorption, a review, Part I.N.Z. Med. J. 84:10–14 (1976).

    CAS  PubMed  Google Scholar 

  41. D. Winne. The vasculature of the jejunal villus. In M. Kramer and F. Lauterbach (eds.),Intestinal Permeation, Excerpta Medica, Amsterdam-Oxford, 1977, pp. 56–57.

    Google Scholar 

  42. T. Z. Csáky and F. Varga. Subepithelial capillary blood flow estimated from blood-tolumen flux of barbital in ileum of rats.Am. J. Physiol. 229:549–552 (1975).

    PubMed  Google Scholar 

  43. M. D. Levitt and D. G. Levitt. Use of inert gases to study the interaction of blood flow and diffusion during passive absorption from the gastrointestinal tract of the rat.J. Clin. Invest. 52:1852–1862 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. J. H. Bond and M. D. Levitt. Use of microspheres to measure small intestinal villus blood flow in the dog.Am. J. Physiol. 236:E577-E583 (1979).

    CAS  PubMed  Google Scholar 

  45. D. Winne. The influence of villous counter current exchange on intestinal absorption.J. Theor. Biol. 53:145–176 (1975).

    Article  CAS  PubMed  Google Scholar 

  46. M. Jodal. The intestinal counter current exchanger and its influence on intestinal absorption. In M. Kramer and F. Lauterbach (eds.),Intestinal Permeation, Excerpta Medica, Amsterdam-Oxford, 1977, pp. 48–54.

    Google Scholar 

  47. J. H. Bond, D. G. Levitt, and M. D. Levitt. Use of inert gases and carbon monoxide to study the possible influence of countercurrent exchange on passive absorption from the small bowel.J. Clin. Invest. 54:1259–1265 (1974).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. J. H. Bond, D. G. Levitt, and M. D. Levitt. Quantitation of countercurrent exchange during passive absorption from the dog small intestine.J. Clin. Invest. 59:308–318 (1977).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. W. H. Barr and S. Riegelman. Intestinal drug absorption and metabolism. I. Comparison of methods and models to study physiological factors ofin vitro andin vivo intestinal absorption.J. Pharm. Sci. 59:154–163 (1970).

    Article  CAS  PubMed  Google Scholar 

  50. W. H. Barr and S. Riegelman. Intestinal drug absorption and metabolism. II. Kinetic aspects of intestinal glucuronide conjugation.J. Pharm. Sci. 59:164–168 (1970).

    Article  CAS  PubMed  Google Scholar 

  51. D. Winne. A discrepancy between the accumulation ofl-phenylalanine in the intestinal wall and the appearance rate in the blood.FEBS Lett. 27:94–96 (1972).

    Article  CAS  PubMed  Google Scholar 

  52. J. M. Diamond and E. M. Wright. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Ann. Rev. Physiol. 31:581–646 (1969).

    Article  CAS  Google Scholar 

  53. E. M. Wright and R. J. Pietras. Routes of nonelectrolyte permeation across epithelial membranes.J. Membr. Biol. 17:293–312 (1974).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayton, W.L. Rate-limiting barriers to intestinal drug absorption: A review. Journal of Pharmacokinetics and Biopharmaceutics 8, 321–334 (1980). https://doi.org/10.1007/BF01059381

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059381

Key words

Navigation