Skip to main content
Log in

Renormalization group analysis of turbulence. I. Basic theory

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop the dynamic renormalization group (RNG) method for hydrodynamic turbulence. This procedure, which uses dynamic scaling and invariance together with iterated perturbation methods, allows us to evaluate transport coefficients and transport equations for the large-scale (slow) modes. The RNG theory, which does not include any experimentally adjustable parameters, gives the following numerical values for important constants of turbulent flows: Kolmogorov constant for the inertial-range spectrumC K=1.617; turbulent Prandtl number for high-Reynolds-number heat transferP t =0.7179; Batchelor constantBa=1.161; and skewness factor¯S 3=0.4878. A differentialK-\(\bar \varepsilon \) model is derived, which, in the high-Reynolds-number regions of the flow, gives the algebraic relationv=0.0837 K2/\(\bar \varepsilon \), decay of isotropic turbulence asK=O(t −1.3307), and the von Karman constantκ=0.372. A differential transport model, based on differential relations betweenK,\(\bar \varepsilon \), andν, is derived that is not divergent whenK→ 0 and\(\bar \varepsilon \) is finite. This latter model is particularly useful near walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A., Chambers, A. J., and Anselmet, F. (1984).Phys. Chem. Hydrodyn. 5, 368.

    Google Scholar 

  • Batchelor, G. (1959).J. Fluid Mech. 5, 113.

    Google Scholar 

  • Bayly, B., and Yakhot, V. (1986).Phys. Rev. A, in press.

  • Deardorff, J. W. (1970).J. Fluid Mech. 41, 453.

    Google Scholar 

  • Deardorff, J. W. (1971).J. Comp. Phys. 7, 120.

    Google Scholar 

  • De Dominicis, C., and Martin, P. C. (1979).Phys. Rev. A 19, 419.

    Google Scholar 

  • Dorfman, R. (1975). In Cohen, E. G. D. (ed.),Fundamental Problems in Statistical Mechanics, North-Holland, Amsterdam.

    Google Scholar 

  • Forster, D., Nelson, D., and Stephen, M. (1977).Phys. Rev. A 16, 732.

    Google Scholar 

  • Fournier, J. P., and Frisch, U. (1978).Phys. Rev. A 17, 747.

    Google Scholar 

  • Fournier, J. P., and Frisch, U. (1983).Phys. Rev. A 28, 1000.

    Google Scholar 

  • Frenkiel, F. N., Klebanoff, P., and Huang, T. T. (1979).Phys. Fluids 22, 1606.

    Google Scholar 

  • Hanjaliĉ, K., and Launder, B. E. (1972).J. Fluid Mech. 52, 609.

    Google Scholar 

  • Herring, J. R., Orszag, S. A., Kraichnan, R. H., and Foxz, D. G. (1974).J. Fluid Mech. 66, 417.

    Google Scholar 

  • Hohenberg, P. C., and Halperin, B. I. (1977).Rev. Mod. Phys. 49, 435.

    Google Scholar 

  • Kolmogorov, A. N. (1941).Dokl. Akad. Nauk SSSR 30, 299.

    Google Scholar 

  • Kraichnan, R. H. (1959).J. Fluid Mech. 5, 497.

    Google Scholar 

  • Kraichnan, R. H. (1961).J. Math. Phys. 2, 124.

    Google Scholar 

  • Kraichnan, R. H. (1971).J. Fluid Mech. 47, 525.

    Google Scholar 

  • Landau, L., and Lifshitz, E. M. (1982).Fluid Mechanics, Pergamon, New York.

    Google Scholar 

  • Launder, B. E., and Spalding, D. B. (1972).Mathematical Models of Turbulence, Academic Press, New York.

    Google Scholar 

  • Launder, B. E., Reece, G. J., and Rodi, W. (1975).J. Fluid Mech. 68, 537.

    Google Scholar 

  • Leslie, D. C. (1972).Developments in the Theory of Turbulence, Clarendon Press, Oxford.

    Google Scholar 

  • Ma, S. K., and Mazenko, G. (1975).Phys. Rev. B 11, 4077.

    Google Scholar 

  • Moin, P., and Kim, J. (1981).J. Fluid Mech. 118, 341.

    Google Scholar 

  • Monin, A. S., and Yaglom, A. M. (1975).Statistical Fluid Mechanics, Vol. 2, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Orszag, S., and Patera, A. (1981).Phys. Rev. Lett. 47, 832.

    Google Scholar 

  • Pao, Y. H. (1965).Phys. Fluids 8, 1063.

    Google Scholar 

  • Pao, Y. H. (1968).Phys. Fluids 11, 1371.

    Google Scholar 

  • Reynolds, W. C. (1976).Annu. Rev. Fluid Mech. 8, 183.

    Google Scholar 

  • Sivashinsky, G., and Yakhot, V. (1985).Phys. Fluids 28, 1040.

    Google Scholar 

  • Smagorinsky, J. (1963).Monthly Weather Rev. 91, 99.

    Google Scholar 

  • Tennekes, H., and Lumley, J. L. (1972).A First Course in Turbulence, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Wilson, K. G. (1971).Phys. Rev. B 4, 3174.

    Google Scholar 

  • Wilson, K. G., and Kogut, J. (1974).Phys. Rev. 12C, 77.

    Google Scholar 

  • Wood, W. W. (1975). In Cohen, E. G. D. (ed.),Fundamental Problems in Statistical Mechanics, North-Holland, Amsterdam.

    Google Scholar 

  • Wyld, H. W. (1961).Ann. Phys. 14, 143.

    Google Scholar 

  • Wyngaard, J. C., and Tennekes, H. (1970).Phys. Fluids 13, 1962.

    Google Scholar 

  • Yakhot, V. (1981).Phys. Rev. A 23, 1486.

    Google Scholar 

  • Yakhot, V., and Sivashinsky, G. (1986).Phys. Rev. A, submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakhot, V., Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1, 3–51 (1986). https://doi.org/10.1007/BF01061452

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061452

Key words

Navigation