Skip to main content
Log in

Pharmacokinetics of methotrexate in leukemia cells: Effect of dose and mode of injection

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A lumped compartmental model has been derived to predict methotrexate concentration as a function of time for L1210 cells in BD2F 1 female mice at doses ranging from 3 mg/kg to 400 mg/kg. Using standard methods of parameter estimation as well as experimental determinations, an integrated approach was derived to account for the differences between the subcutaneous (s.c.) and intraperitoneal (i.p.) modes of injection. It was found that a single generalized forcing function can be used to fit plasma concentration after s.c. injection for all doses. Adequate fits (average error<20% while the standard deviation of experimental determinations was±22%) of L1210 cell data after s.c. injection were obtained. The best results were for a maximum facilitated influx constant Vmax of 0.424 Μg/min/ml, a Michaelis influx constant Km of 1,42 Μg/ml, and a first-order efflux constant α of 0.047 min−1.The model simulations were not sensitive to Vmax, Km,and αso long as the ratio Vmaxwas approximately 9Μg/ml. The values of V max ,K m ,and α which were obtained from our analysis of the in vivodata can be explained on the basis of previously performed in vitroexperiments. The parameters obtained from modeling the s.c. data were then applied for i.p. injection data. The resulting fits were adequate (average error<20% while the standard deviation of experimental determinations was±22%). A single generalized forcing function for drug concentration in the peritoneal cavity after i.p. injection for all doses was derived. The application of these results enables the prediction of methotrexate concentration in neoplastic cells at other doses after either s.c. or i.p. injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Dedrick, D. S. Zaharko, and R. J. Lutz. Transport and binding of methotrexatein vivo.J. Pharm. Sci. 62:882–890 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. R. K. Jain. Dynamics of drug distribution in solid tumors. Ph.D dissertation, University of Delaware. University Microfilms, Ann Arbor, Mich., 1976.

    Google Scholar 

  3. I. D. Goldman. Uptake of drugs and resistance. InDrug Resistance and Selectivity: Biochemical and Cellular Basis, Academic Press, New York, 1973.

    Google Scholar 

  4. R. J. Lutz, R. L. Dedrick, J. A. Straw, M. M. Hart, P. Klubes, and D. S. Zaharko. The kinetics of methotrexate distribution in spontaneous canine lymphosarcoma.J. Pharmacokin. Biopharm. 3:77–97 (1975).

    Article  CAS  Google Scholar 

  5. R. L. Dedrick, R. J. Lutz, K. H. Yang, W. P. Fung, and D. S. Zaharko. Pharmacokinetic model for the transport of methotrexate into Lewis lung tumor in mice. Reprint of paper presented at the 70th Annual AIChE Meeting, New York, 1977.

  6. F. M. Sirotnak and R. C. Donsbach. Comparative studies on the transport of aiminopterin, methotrexate, and methasquin by the L1210 leukemia cell.Cancer Res. 32:2120–2126 (1972).

    CAS  PubMed  Google Scholar 

  7. F. M. Sirotnak and R. C. Donsbach. Kinetic correlates of methotrexate transport and therapeutic responsiveness in murine tumors.Cancer Res. 36:1151–1158 (1976).

    CAS  PubMed  Google Scholar 

  8. M. Dembo and F. M. Sirotnak. Antifolate transport in L1210 leukemia cells: Kinetic evidence for the non-identity of carriers for influx and efflux.Biochim. Biophys. Acta 448:505–516 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. B. E. P. Box. Fitting empirical data.Ann. N.Y. Acad. Sci. 86:792–816 (1960).

    Article  Google Scholar 

  10. F. M. Sirotnak and R. C. Donsbach. Differential cell permeability and the basis for selective activity of methotrexate during therapy of the L1210 leukemia.Cancer Res. 33:1290–1294 (1973).

    CAS  PubMed  Google Scholar 

  11. F. M. Sirotnak and R. C. Donsbach. The intracellular concentration dependence of antifolate inhibition of DNA synthesis in L1210 leukemia cells.Cancer Res. 34:3332–3340 (1974).

    CAS  Google Scholar 

  12. F. M. Sirotnak and R. C. Donsbach. Further evidence for a basis of selective activity and relative responsiveness during antifolate therapy of murine tumors.Cancer Res. 35:1737–1744 (1975).

    CAS  PubMed  Google Scholar 

  13. F. M. Sirotnak and R. C. Donsbach. A basis for the difference in toxicity of methotrexate, aminopterin, and methasquin in mice.Biochem. Pharmacol. 24:156–158 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. D. J. Hutchison, D. J. Robinson, D. Martin, O. L. Ittelsohn, and J. Dillenberg. Effects of selected anticancer drugs on the survival time of mice with L1210 leukemia: Relative response of antimetabolite resistant strains.Cancer Res. 22:57–72 (1962).

    PubMed  Google Scholar 

  15. S. Margolis, F. S. Philips, and S. S. Sternberg. The cytotoxicity of methotrexate in mouse small intestine in relation to inhibition of folic acid reductase and of DNA synthesis.Cancer Res. 31:2037–2046 (1971).

    CAS  PubMed  Google Scholar 

  16. F. M. Sirotnak, R. C. Donsbach, D. M. Dorick, and D. M. Moccio. Tissue pharmacokinetics, inhibition of DNA synthesis, and tumor cell kill after high-dose methotrexate in murine tumor models.Cancer Res. 36:4672–4678 (1976).

    CAS  PubMed  Google Scholar 

  17. W. C. Werkheiser. Specific binding of 4-amino folic analogues by folic acid reductase.J. Biol. Chem. 236:888–893 (1961).

    CAS  Google Scholar 

  18. F. S. Philips, F. M. Sirotnak, J. E. Sodergren, and D. J. Hutchison. Uptake of methotrexate, aminopterin, and methasquin and inhibition of dihydrofolate reductase and of DNA synthesis in mouse small intestine.Cancer Res. 33:153–158 (1973).

    CAS  PubMed  Google Scholar 

  19. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. F. M. Sirotnak and R. C. Donsbach. Stereochemical characteristics of the folate-antifolate transport mechanism in L1210 leukemia cells.Cancer Res. 34:371–377 (1974).

    CAS  PubMed  Google Scholar 

  21. I. D. Goldman, N. S. Lichtenstein, and V. T. Oliverio. Carrier-mediated transport of the folic acid analogue, methotrexate, in L1210 leukemia cells.J. Biol. Chem. 243:5004–5017 (1968).

    Google Scholar 

  22. A. L. Babb, P. J. Johansen, M. J. Strand, H. Tenckhoff, and B. H. Scribner. Bi-directional permeability of the human peritoneum to middle molecules.Proc. Eur. Dialysis Transplant. Assoc. 10:247–261 (1973).

    CAS  Google Scholar 

  23. R. P. Popovich, J. W. Moncrief, J. F. Decherd, J. S. Na, and J. W. Sawyer. Physiological transport parameters in patients in peritoneal and hemodialysis.Proceedings of 10th Annual Contractors' Conference, Artificial Kidney-Chronic Uremia Program, National Institute of Arthritis, Metabolism, and Digestive Diseases, Bethesda, Md., January 1977, pp. 95–98.

    Google Scholar 

  24. R. L. Dedrick, C. E. Myers, R. M. Bungay, and V. T. De Vita, Jr. Pharmacokinetic rationale for peritoneal drug administration in treatment of ovarian cancer.Cancer Treat. Rep. 62:1–11 (1978).

    CAS  PubMed  Google Scholar 

  25. Knud Schmidt-Nielsen. Energy metabolism, body size, and problems of scaling.Fed. Proc. 29:1524 (1970).

    CAS  PubMed  Google Scholar 

  26. K. B. Bischoff, R. L. Dedrick, and D. S. Zaharko. Preliminary model for methotrexate pharmacokinetics.J. Pharm. Sci. 59:149–154 (1970).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weissbrod, J.M., Jain, R.K. & Sirotnak, F.M. Pharmacokinetics of methotrexate in leukemia cells: Effect of dose and mode of injection. Journal of Pharmacokinetics and Biopharmaceutics 6, 487–503 (1978). https://doi.org/10.1007/BF01062105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062105

Key words

Navigation