Skip to main content
Log in

Colour vision, evolution, and perceptual content

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Computational models of colour vision assume that the biological function of colour vision is to detect surface reflectance. Some philosophers invoke these models as a basis for ‘externalism’ about perceptual content (content is distal) and ‘objectivism’ about colour (colour is surface reflectance). In an earlier article (Thompson et al. 1992), I criticised the ‘computational objectivist’ position on the basis of comparative colour vision: There are fundamental differences among the colour vision of animals and these differences do not converge on the detection of any single type of environmental property. David R. Hilbert (1992) has recently defended computational objectivism against my ‘comparative argument’; his arguments are based on the externalist approach to perceptual content originally developed by Mohan Matthen (1988) and on the computationally inspired theory of the evolutionary basis for trichromacy developed by Roger N. Shepard (1990). The present article provides a reply to Hilbert with extensive criticism of both Matthen's and Shepard's theories. I argue that the biological function of colour vision is not to detect surface reflectance, but to provide a set of perceptual categories that can apply to objects in a stable way in a variety of conditions. Comparative research indicates that both the perceptual categories and the distal stimuli will differ according to the animal and its visual ecology, therefore externalism and objectivism must be rejected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Applebury, M. L. and P. A. Hargrave: 1986, ‘Molecular Biology of Visual Pigments’,Vision Research 26, 1881–95.

    Google Scholar 

  • Arend, L. E. and A. Reeves: 1986, ‘Simultaneous Color Constancy’,Journal of the Optical Society of America A 3, 1743–51.

    Google Scholar 

  • Bornstein, M.: 1987, ‘Perceptual Categories in Vision and Audition’, in S. Harnad (ed.),Categorical Perception: The Groundwork of Cognition, Cambridge University Press, Cambridge, pp. 287–300.

    Google Scholar 

  • Bowmaker, J. K.: 1980a, ‘Birds See Ultraviolet Light’,Nature 284, 306.

    Google Scholar 

  • Bowmaker, J. K.: 1980b, ‘Colour Vision in Birds and the Role of Oil Droplets’,Trends in Neurosciences 3, 196–99.

    Google Scholar 

  • Bowmaker, J. K.: 1991, ‘Visual Pigments, Oil Droplets and Photoreceptors’, in Gouras (1991b), pp. 108–27.

    Google Scholar 

  • Bowmaker, J. K., G.H. Jacobs, and J. D. Mollon: 1987, ‘Polymorphism of Photopigments in the Squirrel Monkey: A Sixth Phenotype’,Proceedings of the Royal Society of London B 231, 383–90.

    Google Scholar 

  • Crawford, M. L. J., R. A. Anderson, R. Blake, G. H. Jacobs, and C. Neumeyer: 1990, ‘Interspecies Comparisons in the Understanding of Human Visual Perception’, in L. Spillman and J. S. Werner (eds.),Visual Perception: The Neurophysiological Foundations, Academic Press, San Diego, pp. 23–52.

    Google Scholar 

  • Gibson, J. J.: 1979,The Ecological Approach to Visual Perception, Houghton Mifflin, Boston.

    Google Scholar 

  • Glas, H. W. v.d.: 1980, ‘Orientation of Bees,Apfis mellifera, to Unpolarized Colour Patterns, Simulating the Polarized Skylight Pattern’,Journal of Comparative Physiology A 139, 224–41.

    Google Scholar 

  • Goldsmith, T. H.: 1980, ‘Humming Birds See Near Ultraviolet Light’,Science 207, 786–88.

    Google Scholar 

  • Goldsmith, T. H.: 1990, ‘Optimization, Constraint, and History in the Evolution of Eyes’,Quarterly Review of Biology 65, 281–322.

    Google Scholar 

  • Goldsmith, T. H.: in press, ‘Ultraviolet Receptors and Color Vision: Evolutionary Implications and a Dissonance of Paradigms’,Vision Research.

  • Gould, S. J. and R. Lewontin: 1979, ‘The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme’,Proceedings of the Royal Society B 205, 591–98.

    Google Scholar 

  • Gouras, P.: 1991a, ‘Precortical Physiology of Colour Vision’, in Gouras (1991b), pp. 163–78.

    Google Scholar 

  • Gouras, P. ed.: 1991b,The Perception of Colour Vision and Visual Dysfunction, Volume 6, Macmillan Press, London.

    Google Scholar 

  • Hardin, C. L.: 1988,Color for Philosophers: Unweaving the Rainbow, Hackett Publishing Company, Indianapolis/Cambridge.

    Google Scholar 

  • Hardin, C. L.: 1990, ‘Color and Illusion’, in W. G. Lycan (ed.),Mind and Cognition: A Reader, Basil Blackwell, Oxford, pp. 555–67.

    Google Scholar 

  • Hardin, C. L.: 1992, ‘The Virtues of Illusion’,Philosophical Studies 68, 371–82.

    Google Scholar 

  • Hatfield, G.: 1992, ‘Color Perception and Neural Encoding: Does Metameric Matching Entail a Loss of Information’,PSA 1992 1: 492–504.

    Google Scholar 

  • Hilbert, D. R.: 1987,Color and Color Perception: A Study in Anthropocentric Realism, Center for the Study of Language and Information, Stanford University

  • Hilbert, D. R.: 1992, ‘What is Color Vision?’,Philosophical Studies 68, 351–70.

    Google Scholar 

  • Hurlbert, A.: 1986, ‘Formal Connections Between Lightness Algorithms’,Journal of the Optical Society of America A 3, 1684–93.

    Google Scholar 

  • Hurlbert, A. and T. Poggio: 1988, ‘Synthesizing a Color Algorithm from Examples’,Science 239, 482–85.

    Google Scholar 

  • Hurvich, L.: 1981,Color Vision, Sinauer, Boston.

    Google Scholar 

  • Husserl, E.: 1913/1982,Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy.First Book, trans. F. Kersten, Martinus Nijhoff, The Hague.

    Google Scholar 

  • Ingle, D. J.: 1985, ‘The Goldfish as a Retinex Animal’,Science 225, 651–53.

    Google Scholar 

  • Jacobs, G. H.: 1981,Comparative Color Vision, Academic Press, New York.

    Google Scholar 

  • Jacobs, G. H.: 1985, ‘Within-Species Variation in Visual Capacity among Squirrel Monkeys (Saimiri sciureus): Color Vision’,Vision Research 24, 1267–77.

    Google Scholar 

  • Jacobs, G. H.: 1986, ‘Color Vision Variations in Non-Human Primates’,Trends in Neurosciences 12, 320–23.

    Google Scholar 

  • Jacobs, G. H.: 1990, ‘Evolution of Mechanisms for Color Vision’,SPIE Volume 1250: Perceiving, Measuring, and Using Color, 287–91.

  • Jacobs, G. H.: 1992, ‘Ultraviolet Vision in Vertebrates’,American Zoologist 32, 544–54.

    Google Scholar 

  • Jacobs, G. H. and J. Neitz: 1985, ‘Color Vision in Squirrel Monkeys: Sex Related Differences Suggest the Mode of Inheritance’,Vision Research 25, 141–43.

    Google Scholar 

  • Jacobs, G. H. and J. Neitz: 1987, ‘Color Vision Polymorphism and its Photopigment Basis in a Callitricid Monkey (Saguinus fuscicollis)’,Vision Research 27, 2089–100.

    Google Scholar 

  • Jacobs, G. H., J. Neitz, and J. F. H. Deegan: 1991, ‘Retinal Receptors in Rodents Maximally Sensitive to Ultraviolet Light’,Nature 353, 655–66.

    Google Scholar 

  • Jameson, D. and L. M. Hurvich: 1989, ‘Essay Concerning Color Constancy’,Annual Review of Psychology 40, 1–22.

    Google Scholar 

  • Jordon, G. and J. D. Mollon: 1993, ‘A Study of Women Heterozygous for Colour Deficiencies’,Vision Research 33, 1495–1508.

    Google Scholar 

  • Judd, D. B., D. L. McAdam, and G. Wyszecki: 1964, ‘Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature’,Journal of the Optical Society of America A 54, 1031–40.

    Google Scholar 

  • Ladd-Franklin, C.: 1929,Color Vision and Colour Theories, Harcourt, Brace and Company, New York.

    Google Scholar 

  • Land, E. H.: 1983, ‘Recent Advances in Retinex Theory and Some Implications for Cortical Computations: Color Vision and the Natural Image’,Proceedings of the National Academy of Sciences U.S.A. 80, 5163–69.

    Google Scholar 

  • Levine, J. S. and E. F. MacNichol, Jr.: 1979, ‘Visual Pigments in Teleost Fishes: Effect of Habitat, Microhabitat and Behavior on Visual System Evolution’,Sensory Processes 3, 95–131.

    Google Scholar 

  • Levine, J. S. and E. F. MacNichol, Jr.: 1982, ‘Color Vision in Fishes’,Scientific American 246, 140–49.

    Google Scholar 

  • Lythgoe, J. N.: 1972, ‘The Adaptation of Visual Pigments to their Photic Environment’, in H. J. A. Dartnall (ed.),Handbook of Sensory Physiology. Volume VII, Springer Verlag, Berlin, pp. 566–603.

    Google Scholar 

  • Lythgoe, J. N.: 1979,The Ecology of Vision, Oxford University Press, Oxford.

    Google Scholar 

  • Maloney, L. T.: 1986, ‘Evaluation of Linear Models of Surface Spectral Reflectance with Small Numbers of Parameters’,Journal of the Optical Society of America A 3, 1673–83.

    Google Scholar 

  • Maloney, L. T. and B. Wandell: 1986, ‘Color Constancy: A Method for Recovering Surface Spectral Reflectance’,Journal of the Optical Society of America A 3, 29–33.

    Google Scholar 

  • Marr, D.: 1982,Vision. A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, New York.

    Google Scholar 

  • Matthen, M.: 1988, ‘Biological Functions and Perceptual Content’,Journal of Philosophy 85(1), 5–27.

    Google Scholar 

  • Matthen, M.: 1989, ‘Intensionality and Perception: A Reply to Rosenberg’,Journal of Philosophy 86(12), 727–33.

    Google Scholar 

  • Matthen, M.: 1992, ‘Color Vision: Content verus Experience’, Open Peer Commentary on Thompson et al. 1992,Behavioral and Brain Sciences 15(1), 46–7.

    Google Scholar 

  • Menzel, R.: 1979, ‘Spectral Sensitivity and Color Vision in Invertebrates’, in H. Autrum (ed.),Handbook of Sensory Physiology Volume VII/6A: Comparative Physiology and Evolution of Vision in Invertebrates, Springer Verlag, Berlin, pp. 504–80.

    Google Scholar 

  • Menzel, R. and W. Backhaus: 1991, ‘Color Vision in Insects’, in Gouras (1991b), pp. 262–93.

    Google Scholar 

  • Merbs, S. L. and J. Nathans: 1992, ‘Absorption Spectra of Human Cone Pigments’,Nature 356, 433–35.

    Google Scholar 

  • Mollon, J. D.: 1989, “‘Tho’ she kneel'd in that place where they grew ...” The Uses and Origins of Primate Colour Vision’,Journal of Experimental Biology 146, 21–38.

    Google Scholar 

  • Mollon, J. D.: 1992, ‘Worlds of Difference’,Nature 356, 378–9.

    Google Scholar 

  • Mollon, J. D., J. K. Bowmaker, and G. H. Jacobs: 1984, ‘Variations of Colour Vision in a New World Primate Can Be Explained by Polymorphism of Retinal Pigments’,Proceedings of the Royal Society B 222, 373–99.

    Google Scholar 

  • Nathans, J., D. Thomas, and D. S. Hogness: 1986a, ‘Molecular Genetics of Human Color Vision: The Genes Encoding Blue, Green, and Red Pigments’,Science 232, 193–202.

    Google Scholar 

  • Nathans, J., T. P. Piatanida, R. L. Eddy, T. B. Shows, and D. S. Hogness: 1986b, ‘Molecular Genetics of Inherited Variation in Human Colour Vision’,Science 232, 203–10.

    Google Scholar 

  • Nathans, J.: 1987, ‘Molecular Biology of Visual Pigments’,Annual Review of Neuroscience 10, 163–94.

    Google Scholar 

  • Neitz, J. and G. H. Jacobs: 1986, ‘Polymorphism of the Long-Wavelength Cone in Normal Human Color Vision’,Nature 323, 623–35.

    Google Scholar 

  • Neumeyer, C.: 1980, ‘Simultaneous Color Contrast in the Honeybee’,Journal of Comparative Physiology A 139, 165–76.

    Google Scholar 

  • Neumeyer, C.: 1981, ‘Chromatic Adaptation in the Honeybee: Successive Color Contrast and Color Constancy’,Journal of Comparative Physiology A 144, 543–53.

    Google Scholar 

  • Neumeyer, C.: 1991, ‘Evolution of Colour Vision’, in John R. Cronly-Dillon and Richard L. Gregory (eds.),Evolution of the Eye and Visual System: Vision and Visual Dysfunction, Volume 2, Macmillan Press, London, pp. 284–305.

    Google Scholar 

  • Neumeyer, C.: 1992a, ‘On Perceived Colors’, Open Peer Commentary on Thompson et al. 1992,Behavioral and Brain Sciences 15(1), 49.

    Google Scholar 

  • Neumeyer, C.: 1992b, ‘Tetrachromatic Color Vision in Goldfish: Evidence from Color Mixture Experiments’,Journal of Comparative Physiology A 171, 639–49.

    Google Scholar 

  • Nuboer, J. F. W.: 1986, ‘A Comparative View of Colour Vision’,Netherlands Journal of Zoology 36, 344–80.

    Google Scholar 

  • Poggio, T., V. Torre, and C. Koch: 1985, ‘Computational Vision and Regularization Theory’,Science 317, 314–9.

    Google Scholar 

  • Pylyshyn, Z. W.: 1984,Computation and Cognition: Towards a Foundation for Cognitive Science. The MIT Press/Bradford Books, Cambridge, MA.

    Google Scholar 

  • Ramachandran, V. S.: 1985, ‘The Neurobiology of Perception’,Perception 14, 97–103.

    Google Scholar 

  • Searle, J.: 1983,Intentionality: An Essay in the Philosophy of Mind, Cambridge University Press, Cambridge.

    Google Scholar 

  • Shepard, R. N.: 1987, ‘Evolution of a Mesh between Principles of the Mind and Regularities of the World’, in John Dupré (ed.),Beyond the Best Essays on Evolution and Optimality, The MIT Press-Bradford Books, Cambridge, MA, pp. 251–75.

    Google Scholar 

  • Shepard, R. N.: 1990, ‘A Possible Evolutionary Basis for Trichromacy, inPerceiving, Measuring, and Using Color, Proceedings of the SPIE/SPSE Symposium on Electronic Imaging: Science and Technology 1250, 301–9.

  • Shepard, R. N.: 1992, ‘What in the World Determines the Structure of Color Space?’, Open Peer Commentary on Thompson et al. 1992,Behavioral and Brain Sciences 15(1), 50–1.

    Google Scholar 

  • Snyder, A. W. and H. B. Barlow: 1988, ‘Revealing the Artist's Touch’,Nature 331, 117–8.

    Google Scholar 

  • Thompson, E.: 1992, ‘Novel Colours’,Philosophical Studies 67, 105–33.

    Google Scholar 

  • Thompson, E.: 1995,Colour Vision: A Study in Cognitive Science and the Philosophy of Perception, Routledge Press, London.

    Google Scholar 

  • Thompson, E., A. Palacios, and F. J. Varela: 1992, ‘Ways of Coloring: Comparative Color Vision as a Case Study for Cognitive Science’,Behavioral and Brain Sciences 15(1), 1–74.

    Google Scholar 

  • Tovée, M. J., J. K. Bowmaker, and J. D. Mollon: 1992, ‘The Relationship Between Cone Pigments and Behavioural Sensitivity in a New World Monkeys (Callithrix jacchus jacchus)’,Vision Research 32, 867–78.

    Google Scholar 

  • Varela, F. J., E. Thompson, and E. Rosch: 1991,The Embodied Mind: Cognitive Science and Human Experience, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Varela, F. J., A. Palacios, and T. H. Goldsmith: 1993, ‘Color Vision of Birds’, in H. J. Bischof and H. P. Zeigler (eds.),Avian Vision and Cognition, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Werner, A., R. Menzel, and C. Wehrhahn: 1988, ‘Color Constancy in the Honeybee’,Journal of Neuroscience 8, 156–9.

    Google Scholar 

  • Winderickx, J., D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb: 1992, Polymorphism in Red Photopigment Underlies Variation in Colour Matching’,Nature 356, 431–3.

    Google Scholar 

  • Wright, A. and W. W. Cummings: 1971, ‘Color Naming Functions for the Pigeon’,Journal of the Experimental Analysis of Behavior 15, 7–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Versions of this article were read to the Department of Philosophy at the University of Chicago and to the Department of Philosophy at Boston University. I am grateful to the audiences for the discussions that ensued. I am also grateful to an anonymous referee for constructive criticism of certain points in the article. Special thanks are due to my comparative colour vision collaborators, Adrian Palacios and Francisco Varela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, E. Colour vision, evolution, and perceptual content. Synthese 104, 1–32 (1995). https://doi.org/10.1007/BF01063672

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01063672

Keywords

Navigation