Skip to main content
Log in

Selective breeding for initial sensitivity to ethanol

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Selective breeding for initial sensitivity to ethanol has been carried out by a number of investigators in order to investigate the mechanisms by which ethanol brings about a myriad of effects on the mammalian central nervous system. In addition the availability of these selectively bred animals provides clues to the causes of the genetic predisposition of humans to alcoholism. Eventually it is envisioned that the synteny between the mouse and human genomes will allow identification of specific genes responsible for acute effects of ethanol in both species as well as clues as to how alcoholism in humans can be better identified, prevented, and treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, R., Melchior, C., and Deitrich, R. (1980). The effect of halothane on mice selectively bred for differential sensitivity to alcohol.Pharmacol. Biochem. Behav. 12:691–695.

    Google Scholar 

  • Bremer, E. G., Bowen-Pope, D. F., Hakomori, S., Raines, E., and Ross, R. (1984). Ganglioside-mediated modulation of cell growth, growth factor binding and receptor phosphorylation.J. Biol. Chem. 259:6818–6825.

    Google Scholar 

  • Bremer, E. G., Schlessinger, J., and Hakomori, S. (1986). Ganglioside-mediated modulation of cell growth. Specific effects of Gm3 on tyrosine phosphorylation of the epidermal growth factor receptor.J. Biol. Chem. 261:2434–2440.

    Google Scholar 

  • Chan, K.-F. J. (1987). Ganglioside-modulated protein phosphorylation. Partial purification and characterization of a ganglioside-stimulated protein kinase in brain.J. Biol. Chem. 262:5248–5255.

    Google Scholar 

  • Chan, K.-F. J. (1988). Ganglioside-modulated protein phosphorylation. Partial purification and characterization of a ganglioside-inhibited protein kinase in brain.J. Biol. Chem. 263:568–574.

    Google Scholar 

  • Collins, A. C. (1981). A review of research using short-sleep and long-sleep mice. In McClearn, G. E., Deitrich, R. A., and Erwin, V. G. (eds.),Development of Animal Models as Pharmacogenetic Tools, NIAAA Research Monograph, Rockville, MD, pp. 161–170.

  • Collins, A. C., Campbell, S. M., Romm, E., and Marks, M. J. (1990). A comparison of sensitivity to oxotremorine and muscarinic receptors in LS and SS mice.Alcohol. Clin. Exp. Res. 14:605–615.

    Google Scholar 

  • Crabbe, J. C., Jr., Feller, D. J., and Phillips, T. J. (1990). Selective breeding for two measures of sensitivity to ethanol. In Deitrich, R. A., and Pawlowski, A. A. (eds.),Initial Sensitivity to Ethanol, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, pp. 123–154.

    Google Scholar 

  • DeFiebre, C. M., and Collins, A. C. (1989). Behavioral desensitization to nicotine is enhanced differentially by ethanol in long-sleep and short-sleep mice.Alcohol 6:45–51.

    Google Scholar 

  • DeFiebre, C. M., Marks, M. J., and Collins, A. C. (1990). Ethanol-nicotine interactions in long-sleep and short-sleep mice.Alcohol 7:249–257.

    Google Scholar 

  • DeFiebre, C. M., Romm, E., Collins, J. T., Draski, L. J., Deitrich, R. A., and Collins, A. C. (1991). Responses to cholinergic agonists of rats selectively bred for differential sensitivity to ethanol.Alcohol. Clin. Exp. Res. 15:270–276.

    Google Scholar 

  • DeFries, J. C. (1981). Current perspectives on selective breeding: Example and theory. In McClearn, G. E., Deitrich, R. A., Erwin, V. G. (eds.),Development of Animal Models as Pharmacogenetic Tools, NIAAA Research Monograph, Rockville, MD, pp. 11–36.

  • DeFries, J. C., Wilson, J. R., Erwin, V. G., and Petersen, D. R. (1989). LS x SS recombinant inbred strains of mice: Initial characterization.Alcohol. Clin. Exp. Res. 13:196–200.

    Google Scholar 

  • Deitrich, R. A. (1990). Selective breeding of mice and rats for initial sensitivity to ethanol: Contributions to understanding of ethanol's actions. In Deitrich, R. A., and Pawlowski, A. A. (eds.),Initial Sensitivity to Alcohol, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, pp. 7–60.

    Google Scholar 

  • Deitrich, R. A., Bludeau, P. A., and Baker, R. C. (1989). Investigations of the role of protein kinase C in the acute sedative effects of ethanol.Alcohol. Clin. Exp. Res. 13:737–745.

    Google Scholar 

  • Dibner, M. D., Zahniser, N. R., Wolfe, B. B., Rabin, R. A., and Molinoff, P. B. (1980). Brain neurotransmitter receptor systems in mice genetically selected for differences in sensitivity to ethanol.Pharm. Biochem. Behav. 12:509–513.

    Google Scholar 

  • Disbrow, J. K., Masserano, J. M., and Weiner, N. (1986). Thyroid status during postnatal maturation of the brain in mice genetically bred for differences in ethanol sensitivity.J. Pharmacol. Exp. Ther. 237:874–880.

    Google Scholar 

  • Draski, L. J., Spuhler, K. P., Erwin, V. G., Baker, R. C., and Deitrich, R. A. (1992). Selective breeding of rats differing in sensitivity to the effects of acute ethanol administration.Alcohol. Clin. Exp. Res. 16:48–54.

    Google Scholar 

  • Eriksson, C. J. P. (1981). Finnish selection studies on alcoholrelated behaviors: Factors regulating voluntary alcohol consumption. In McClearn, G. E., Deitrich, R. A., and Erwin, V. G. (eds.),Development of animal models as pharmacogenetic Tools, NIAAA Research Monograph, Rockville, MD, pp. 119–145.

  • Eriksson, C. J. P. (1990). Finnish selective breeding studies for initial sensitivity to ethanol: Update 1988 on the AT and ANT rat lines. In Deitrich, R. A., and Pawlowski, A. A. (eds.),Initial Sensitivity to Alcohol, National Institute on Alcohol Abuse and Alcoholism Research Monograph 20, Rockville, MD, pp. 61–86.

  • Eriksson, K., and Rusi, M. (1981). Finnish selection studies on alcohol-related behaviors: General outline. In McClearn, G. E., Deitrich, R. A., and Erwin, V. G. (eds.)Development of Animal Models as Pharmacogenetic Tools, NIAAA Research Monograph 6, Rockville, MD, pp. 87–117.

  • Erwin, V. G., and Jones, B. C. (1989). Comparison of neurotensin levels, receptors and actions in LS/Ibg and SS/Ibg mice.Peptides 10:345–440.

    Google Scholar 

  • Erwin, V. G., and Su, N. C. (1989). Neurotensin and ethanol interactions on hypothermia and locomotor activity in LS and SS Mice.Alcohol. Clin. Exp. Res. 13:91–94.

    Google Scholar 

  • Erwin, V. G., KcClearn, G. E., and Kuse, A. R. (1980). Interrelationships of alcohol consumption, actions of alcohol and biochemical traits.Pharm. Biochem. Behav. 13:297–302.

    Google Scholar 

  • Erwin, V. G., Korte, A., and Jones, B. C. (1988). Central muscarinic cholinergic influences on ethanol sensitivity in long-sleep and short-sleep mice.J. Pharmacol. Exp. Ther. 247:857–862.

    Google Scholar 

  • Erwin, V. G., Jones, B. C., and Radcliffe, R. (1990a). Low doses of ethanol reduce neurotensin levels in discrete brain regions from LS/Ibg and SS/Ibg mice.Alcohol. Clin. Exp. Res. 14:42–47.

    Google Scholar 

  • Erwin, V. G., Jones, B. C., and Radcliffe, R. (1990b). Further characterization of LS x SS recombinant inbred strains of mice: Activating and hypothermic effects of ethanol.Alcohol. Clin. Exp. Res. 14:200–204.

    Google Scholar 

  • Falconer, D. S. (1960).Introduction to Quantitative Genetics, Ronald Press, New York.

    Google Scholar 

  • French, T. A., Clay, K. L., Murphy, R. C., and Weiner, N. (1985a). Alpha-methyl-para-tyrosine effects in mice selectively bred for differences in sensitivity to ethanol.Biochem. Pharmacol. 34:3811–3821.

    Google Scholar 

  • French, T. A., and Weiner, N. (1984). Effect of ethanol on tyrosine hydroxylation in brain regions of long and short sleep mice.Alcohol. 1:247–252.

    Google Scholar 

  • French, T. A., and Weiner, N. (1991a). Postnatal development of differences in acute ethanol effects on body temperature and serotonin synthesis is LS and SS miceAlcohol.Clin. Exp. Res. 15:323.

    Google Scholar 

  • French, T. A., and Weiner, N. (1991b). Serotoninergic involvement in ethanol-induced alterations of thermoregulation in long-sleep and short-sleep mice.J. Pharmacol. Exp. Ther. 259:833–840.

    Google Scholar 

  • French, T. A., Masserano, J. M., and Weiner, N. (1985b). Ethanol-induced changes in tyrosine hydroxylase activity in adrenal glands of mice selectively bred for differences in sensitivity to ethanol.J. Pharmacol. Exp. Ther. 232:315–321.

    Google Scholar 

  • French, T. A., Masserano, J. M., and Weiner, N. (1988). Further studies on the neurochemical mechanisms mediating differences in ethanol sensitivity in LS and SS mice.Alcohol. Clin. Exp. Res. 12:215–223.

    Google Scholar 

  • French, T. A., Clay, K. L., and Weiner, N. (1989). Role of brain tyrosine availability in mediating differences in ethanol sensitivity in long-sleep and short-sleep mice.J. Pharmacol. Exp. Ther. 250:556–564.

    Google Scholar 

  • Goldstein, D. B. (1990). Cell membrane fluidity as a determinant of Intoxication: Status of the hypothesis. In R. A., Deitrich, and Pawlowski, A. A. (eds.),Initial Sensitivity to Ethanol, National Institute on Alcohol Abuse and Alcohoism Research Monograph 20, Rockville, MD, pp. 155–170.

  • Goldstein, D. B., Hungund, B. L., and Lyon, R. C. (1983). Increased surface glycoconjugates of synaptic membranes in mice during chronic ethanol treatment.Br. J. Pharmacol. 78:8–10.

    Google Scholar 

  • Hansen, C., and Spuhler, K. (1984). Development of the National Institutes of Health genetically heterogeneous rat stock.Alcohol. Clin. Exp. Res. 8:477–479.

    Google Scholar 

  • Harris, R. A. (1991). Mammalian genetics in the study of alcohol and anesthetic actions.Ann. N.Y. Acad. Sci. 625:508–514.

    Google Scholar 

  • Harris, R. A., Baxter, D. M., Mitchell, M. A., and Hitzemann, R. J., (1984a). Physical properties and lipid composition of brain membranes from ethanol tolerantdependent mice.Mol. Pharmacol. 25:401–409.

    Google Scholar 

  • Harris, R. A., Crabbe, J. C., and McSwigan, J. D. (1984b). Relationship of membrane physical properties to alcohol dependence in mice selected for genetic differences in alcohol withdrawal.Life. Sci. 35:2601–2608.

    Google Scholar 

  • Harris, R. A., Groh, G. I., Baxter, D. M., and Hitzemann, R. J. (1984c). Gangliosides enhance the membrane actions of ethanol and pentobarbital.Mol. Pharacol. 25:410–417.

    Google Scholar 

  • Harris, R. A., Zaccaro, L. M., McQuilkin, S., and McClard, A. (1988). Effects of ethanol and calcium on lipid order of membranes from mice selected for genetic differences in ethanol intoxication.Alcohol 5:251–257.

    Google Scholar 

  • Heston, W. D., Erwin, V. G., Anderson, S. M., and Robbins, H. (1974). A comparison of the effects of alcohol on mice selectively bred for differences in ethanol sleep-time.Life Sci. 14:365–370.

    Google Scholar 

  • Kakihana, R. (1976). Adrenocortical function in mice selectively bred for different sensitivity to ethanol.Life Sci. 18:1131–1137.

    Google Scholar 

  • Kakihana, R. (1977). Endocrine and autonomic studies in mice selectively bred for different sensitivity to ethanol.Adv. Exp. Med. Biol. 85A:83–95.

    Google Scholar 

  • Keir, W. J., and Deitrich, R. A. (1990). Development of central nervous system sensitivity to ethanol and pentobarbital in short- and long-sleep mice.J. Pharmacol. Exp. Ther. 254:831–835.

    Google Scholar 

  • Koblin, D. D., and Deady, J. E. (1981). Anaesthetic requirement in mice selectively bred for differences in ethanol sensitivity.Br. J. Anaesth. 53:5–10.

    Google Scholar 

  • Marks, M. J., Romm, E., Campbell, S. M., and Collins, A. C. (1989a). Variation of nicotinic binding sites among inbred strains.Pharm. Biochem. Behav. 33:679–689.

    Google Scholar 

  • Marks, M. J., Stitzel, J. A., and Collins, A. C. (1989b). Genetic influences on nicotine responses.Pharm. Biochem. Behav. 33:667–678.

    Google Scholar 

  • Masserano, J. M., Disbrow-Erickson, J., French, T. A., Zoeller, R. T., Zhao, H., and Weiner, N. (1989). LS and SS mice: Models for the study of the role of TRH in ethanol sensitivity.Ann. N.Y. Acad. Sci. 553:505–507.

    Google Scholar 

  • McClearn, G. E. (1981a). Current perspectives on selective breeding: Introduction. In McClearn, G. E., Deitrich, R. A., and Erwin, V. G. (eds.),Development of Animal Models as Pharmacogenetic Tools, NIAAA Research Monograph 6, Rockville, MD, pp. 3–10.

  • McClearn, G. E. (1981b). Selective breeding for alcohol-related phenotypes—Introduction. In McClearn, G. E., Deitrich, R. A., and Erwin, V. G. (eds.),Development of Animal Models as Pharmacogenetic Tools, NIAAA Research Monograph 6, Rockville, MD, pp. 81–85.

  • McClearn, G. E. (1981c). Pharmacogenetic phenotypes—Introduction. In McClearn, G. E., Deitrich, R. A., and Erwin, V. G. (eds.),Development of Animal Models as Pharmacogenetic Tools, NIAAA Research Monograph 6, Rockville, MD, pp. 205–207.

  • McClearn, G. E., and Kakihana, R. (1981). Selective breeding for ethanol sensitivity: Short-sleep and long-sleep mice. In McClearn, G. E., Deitrich, R. A., and Erwin, V. G. (eds.),Development of Animal Models as Pharmacogenetic Tools, NIAAA Research Monograph 6, Rockville, MD, pp. 147–159.

  • Miner, L., and Collins, A. C. (1989). Strain comparison of nicotine-induced seizure sensitivity and nicotinic receptors.Pharm. Biochem. Behav. 33:469–475.

    Google Scholar 

  • Payly, J. R., Ullman, E. A., and Collins, A. C. (1990). Strain differences in adrenalectomy-induced alterationsin nicotine sensitivity in the mouse.Pharm. Biochem. Behav. 35:171–179.

    Google Scholar 

  • Phillips, T. J., and Crabbe, J. C., Jr. (1991). Behavioral studies of genetic differences in alcohol action. In Crabbe, J. C., Jr., and Harris, R. A. (eds.),The Genetic Basis of Alcohol and Drug Actions, Plenum Press, New York, pp. 25–104.

    Google Scholar 

  • Romm, E., and Collins, A. C. (1987). Body temperature influences on ethanol elimination rate.Alcohol. 4:189–198.

    Google Scholar 

  • Schuckit, M. A. (1992). Reaction to alcohol as a predictor or alcoholism.Alcohol. Clin. Exp. Res. 16:656.

    Google Scholar 

  • Spuhler, K., Deitrich, R. A., and Baker, R. C. (1990). Selective breeding of rats differing in sensitivity to the hypnotic affects of ratte ethanol administraion. In Deitrich, R. A., and Pawlowski, A. A. (eds.),Initial Sensitivity to Alcohol, National Institute on Alcohol Abuse and Alcoholism Mesearch Monograph 20, Rockville, MD, pp. 87–102.

  • Tsuji, S., Arita, M., and Nagai, Y. (1983). GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cells lines.J. Biochem. 94:303–306.

    Google Scholar 

  • Tsuji, S., Nakajima, J., Sasaki, T., and Nagai, Y. (1985). Bioactive gangliosides. IV Ganglioside GQ1b/Ca2+dependent protein kinase activity exists in the plasma membrane fracation of neuroblastoma cell line, GOTO.J. Biochem. 97:969–972.

    Google Scholar 

  • Tsuji, S., Yamashita, T., and Nagai, Y. (1988). A novel, carbohydrate signal-mediated surface protein phosphorylation: Ganglioside GQ1b stimulates ecto-protein kinase activity on the cell surface of a human neuroblastoma cell eine, GOTO.J. Biochem. 104:498–503.

    Google Scholar 

  • Ullman, M. D., Baker, R. C., and Deitrich, R. A. (1987). Gangliosides of long sleep and short sleep mouse cerebellum and hippocampus and cerebellar and whole brain synaptosomal plasma membranes.Alcohol. Clin. Exp. Res. 11:158–162.

    Google Scholar 

  • Ullman, M. D., Baker, R. C., and Deitrich, R. A. (1987). Gangliosides of long sleep and short sleep mouse cerebellum and hippocampus and cerebellar and whole brain synaptosomal plasma membranes.Alcohol. Clin. Exp. Res. 11:158–162.

    Google Scholar 

  • Ullman, M. D., Ventura, R. F., Draski, L. J., Deitrich, R. A., and Baker, R. C. (1992). Ceramide composition of whole brain synaptosomal gangliosides from mice genetically bred for divergent ethanol sensitivities.Alcohol. 9:323–326.

    Google Scholar 

  • Wand, G. S. (1990). Differential regulation of anterior pituitary corticotrope function is observed in vivo but not in vitro in two lines of ethanol-sensitive mice.Alcohol. Clin. Exp. Res. 14:100–106.

    Google Scholar 

  • Wand, G. S., and Levine, M. A., (1991). Hormonal tolerance to ethanol is associated with decreased expression of the GTP-binding protein, G5, and adenylyl cyclase activity in ethanol-treated LS mice.Alcohol. Clin. Exp. Res. 15:705–710.

    Google Scholar 

  • Weiner, N., Disbrow, J. K., French, T. A., and Masserano, J. M. (1987). The influence of catecholamine systems and thyroid function on the actions of ethanol in long-sleep (LS) and short-sleep (SS) mice.Ann. N.Y. Acad. Sci. 492:375–383.

    Google Scholar 

  • Zgombick, J. M., and Erwin, V. G. (1987). Central mechanisms of ethanol-induced adrenocortical response in selectively bred lines of mice.Neuroendocrinology.46:324–332.

    Google Scholar 

  • Zgombick, J. M., Erwin, V. G., and Cornell, K. (1986). Ethanol-induced adrenomedullary catecholamine secretion in LS/Ibg and SS/Ibg mice.J. Pharmacol. Exp. Ther. 236:634–640.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants AA-00093, AA-05868, AA-03527.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deitrich, R.A. Selective breeding for initial sensitivity to ethanol. Behav Genet 23, 153–162 (1993). https://doi.org/10.1007/BF01067420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067420

Key Words

Navigation