Skip to main content
Log in

Formation of a quasistationary jet within a nozzle during its shock start-up

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. J. A. D. Ackroyd, “A study on the running times in reflected shock tunnels,” Aeronaut. Res. Council, Current Papers, No. 883 (1967).

  2. H. O. Amann, “Vorgange beim Start einer ebenen Reflexionsduse,” Z. Flugwiss.,19, No. 10 (1971).

  3. H. O. Amann, “Experimental study of the starting process in a reflection nozzle,” Phys. Fluids,12, No. 5 (1969).

  4. C. E. Smith, “An analytic study of a starting process in a hypersonic nozzle,” in: 1964 Proceedings of the Heat Transfer and Fluid Mechanics Institute, Standford University Press, Stanford (1964).

    Google Scholar 

  5. C. E. Smith, “The starting process in a hypersonic nozzle,” J. Fluid Mech.,24, No. 4 (1966).

  6. R. Marmey and J. P. Guibergia, “Etude experimentale des phenomenes accompagnant l'amorgage d'une tuyere hypersonic,” Compt. Rend. Acad. Sci., Ser. A,271, No. 2

  7. D. Migdal and F. Landis, “Characteristics of conical supersonic nozzles” ARS J.,32, No. 12 (1962).

  8. L. Beck and R. Kaffel, “Determination of oblique compression shocks ina conical nozzle with critical section in the form of two circles,” Raketn. Tekh. Kosmonavt.,4, No. 12 (1966).

  9. P. K. Chang, Separation of Flow, Pergamon (1969).

  10. G. Yu. Stepanov and L. V. Gogish, Quasi-one-dimensional Gasdynamics of Rocket Motor Nozzles [in Russian], Mashinostroenie, Moscow (1973).

    Google Scholar 

  11. A. Mager, “On the model of the free, shock-separated, turbulent boundary layer,” J. Aeronaut. Sci.,23, No. 2 (1956).

  12. M. Summerfield, C. R. Foster, and W. C. Swan, “Flow separation in overexpanded supersonic nozzles,” Jet Propuls.,24, No. 5 (1954).

  13. G. E. Gadd, “Interactions between wholly laminar or wholly turbulent boundary layers and shock waves strong enough to causes separation,” J. Aeronaut. Sci.,20, No. 11 (1953).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 76–82, January–February, 1977.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gvozdeva, L.G., Zhilin, Y.V. Formation of a quasistationary jet within a nozzle during its shock start-up. Fluid Dyn 12, 63–67 (1977). https://doi.org/10.1007/BF01074626

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01074626

Navigation