Skip to main content
Log in

Geometry of nonlinear differential equations

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

The paper contains a survey of certain contemporary concepts and results connected with the geometric foundations of the theory of nonlinear partial differential equations. At the base of the account is situated the geometry and analysis on jet spaces, finite and infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. V. I. Arnol'd, “Contact manifolds, Legendre mappings, and singularities of wave fronts,” Lisp. Mat. Nauk,29, No. 4, 153–154 (1974).

    Google Scholar 

  2. V. I. Bliznikas and Z. Yu. Lupeikis, “The geometry of differential equations,” in: Algebra. Topology. Geometry [in Russian], Vol. 11, Itogi Nauki i Tekhniki VINITI Akad. Nauk SSSR, Moscow (1974), pp. 209–259.

    Google Scholar 

  3. J. M. Boardman, “Singularities of differentiable mappings,” in: Singularities of Differentiate Mappings [Russian translation], Mir, Moscow (1968), pp. 102–152.

    Google Scholar 

  4. A. M. Vinogradov, “The algebra of the logic of the theory of linear differential operators,” Dokl. Akad. Nauk SSSR,205, No. 5, 1025–1028 (1972).

    Google Scholar 

  5. A. M. Vinogradov, “Multivalued solutions and the principle of classification of nonlinear differential equations,” Dokl. Akad. Nauk SSSR,210, No. 1, 11–14 (1973).

    Google Scholar 

  6. A. M. Vinogradov, “Theory of symmetry for nonlinear partial differential equations,” Moscow University (1974).

  7. A. M. Vinogradov, “On the algebro-geometric foundations of the Lagrangian theory of fields,” Dokl. Akad. Nauk SSSR,236, 284–287 (1977).

    Google Scholar 

  8. A. M. Vinogradov, “A spectral sequence connected with nonlinear differential equations, and the algebro-geometric foundations of the Lagrangian theory of fields with constraints,” Dokl. Akad. Nauk SSSR,238, No. 5, 1028–1031 (1978).

    Google Scholar 

  9. A. M. Vinogradov, “Hamiltonian structures in the theory of fields,” Dokl. Akad. Nauk SSSR,241, No. 1, 18–21 (1978).

    Google Scholar 

  10. A. M. Vinogradov and E. M. Vorob'ev, “Application of symmetries in finding exact solutions of the Zabolotskaya-Khokhlov equation,” Akust. Zh.,22, No. 1, 23–27 (1976).

    Google Scholar 

  11. A. M. Vinogradov, I. S. Krasil'shchik, and V. V. Lychagin, Application of Nonlinear Equations to Civil Aviation [in Russian], Mosk. Inst. Inzh. Grazhd. Aviatsii, Moscow (1977).

    Google Scholar 

  12. A. M. Vinogradov, I. S. Krasil'shchik, and V. V. Lychagin, Geometry of Jet-Spaces and Nonlinear Differential Equations [in Russian], Mosk. In-t Elektr. Mash., Moscow (1979).

    Google Scholar 

  13. A. M. Vinogradov and B. A. Kupershmidt, “Structure of Hamiltonian mechanics,” Usp. Mat. Nauk,32, No. 4, 175–236 (1977).

    Google Scholar 

  14. M. M. Vinogradov, “On Spencer and de Rham algebraic cohomology,” Dokl. Akad. Nauk SSSR,242, No. 5, 989–992 (1978).

    Google Scholar 

  15. I. M. Gel'fand and L. A. Dikii, “Asymptotics of the resolvent of Sturm-Liouville equations and the algebra of Korteweg-de Vries equations,” Usp. Matem. Nauk,30, No. 5, 67–100 (1975).

    Google Scholar 

  16. V. M. Zakalyukin, “On Lagrangian and Legendre singularities,” Funkts. Anal. Prilozhen.,10, No. 1, 26–36 (1976).

    Google Scholar 

  17. N. Kh. Ibragimov and R. D. Anderson, “Groups of Lie -Baecklund tangent transformations,” Dokl. Akad. Nauk SSSR,227, No. 3, 539–542 (1976).

    Google Scholar 

  18. E. Cartan, Exterior Differential Systems and Their Geometric Applications [Russian translation], Moscow University (1962).

  19. A. P. Krishchenko, “On the structure of singularities of solutions of quasilinear equations,” Usp. Mat. Nauk,31, No. 3, 219–220 (1976).

    Google Scholar 

  20. A. P. Krishchenko, “On deviations of R-manifolds,” Vestn. Mosk. Univ. Mat., Mekh., No. 1, 17–20 (1977).

    Google Scholar 

  21. B. A. Kupershmidt, “On the geometry of jet manifolds,” Usp. Mat. Nauk,30, No. 5, 211–212 (1975).

    Google Scholar 

  22. B. A. Kupershmidt, “Lagrangian formalism in the calculus of variations,” Funkts. Anal. Prilozhen.,10, No. 2, 77–78 (1976).

    Google Scholar 

  23. V. V. Lygachin, “Local classification of first order nonlinear partial differential equations,” Usp. Mat. Nauk,30, No. 1, 101–171 (1975).

    Google Scholar 

  24. V. V. Lychagin, “On sufficient orbits of the group of contact diffeomorphisms,” Mat. Sb.,104, No. 2, 248–270 (1977).

    Google Scholar 

  25. V. V. Lychagin, “Contact geometry and second order linear differential equations,” Usp. Mat. Nauk,34, No. 1, 137–165 (1979).

    Google Scholar 

  26. Yu. I. Manin, “Algebraic aspects of nonlinear differential equations,” in: Contemporary Problems of Mathematics [in Russian], Vol. 11, Itogi Nauki i Tekhniki VINITI Akad. Nauk SSSR, Moscow (1978), pp. 5–152.

    Google Scholar 

  27. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  28. L. V. Ovsyannikov and N. Kh. Ibragimov, “Group analysis of the differential equations of mechanics,” in: General Mechanics [in Russian], Vol. 2, Itogi Nauki i Tekhniki VINITI Akad. Nauk SSSR, Moscow (1975), pp. 5–52.

    Google Scholar 

  29. P. K. Rashevskii, Geometric Theory of Partial Differential Equations [in Russian], Gostekhizdat, Moscow-Leningrad (1947).

    Google Scholar 

  30. D. Spencer, “Overdetermined systems of linear partial differential equations,” Matematika,14, No. 2, 66–90; No. 3, 99–126 (1970).

    Google Scholar 

  31. A. Andreotti, C. D. Hill, S. Lojasiewicz, and B. MacKichan, “Complexes of differential operators. The Mayer-Vietoris sequence,” Invent. Math.,35, No. 1, 43–86 (1976).

    Google Scholar 

  32. E. Cartan, “Sur certaines expressions differentielles et le probleme de Pfaff,” Ann. Sci. Ecole Norm. Super., Ser. 3,16, 239–332 (1899).

    Google Scholar 

  33. E. Cartan, “Sur l'integration des systemes d'equations aux differentielles totales,” Ann. Sci. Ecole Norm. Super., Ser. 3,18, 241–311 (1901).

    Google Scholar 

  34. P. Dedecker, “On the generalisation of symplectic geometry to multiple integrals in the calculus of variations,” Lect. Notes Math.,570, 395–456 (1977).

    Google Scholar 

  35. C. Ehresmann, “Introduction a la theorie des structures infinitesimales et des pseudo-groupes de Lie,” in: Coloq.Internat. Centre Nat. Rech. Scient. 52 Strasbourg, 1953, Paris (1953), pp. 97–110.

  36. A. R. Forsyth, Theory of Differential Equations, Dover, New York (1960).

    Google Scholar 

  37. H. Goldschmidt, “Existence theorems for analytic partial differential equations,” Ann. Math.,86, No. 2, 246–270 (1967).

    Google Scholar 

  38. H. Goldschmidt, “Integrability criteria for systems of nonlinear partial differential equations,” J. Different. Geom.,1, No. 3, 269–307 (1967).

    Google Scholar 

  39. H. Goldschmidt, “Prolongations of linear partial differential equations. I. A conjecture of E. Cartan,” Ann. Sci. Ecole Norm. Super.,1, No. 2, 417–444 (1968).

    Google Scholar 

  40. H. Goldschmidt, “Prolongations of linear partial differential equations. II. Inhomogeneous equations,” Ann. Sci. Ecole Norm. Super.,1, No. 4, 617–625 (1968).

    Google Scholar 

  41. H. Goldschmidt, “Prolongementes d'equations differentielles lineaire. III. La suite exacte de cohomologie de Spencer,” Ann. Sci. Ecole Norm. Super.,7, No. 1, 5–27 (1974).

    Google Scholar 

  42. H. Goldschmidt and D. Spencer, “On the nonlinear cohomology of Lie equations. I, II,” Acta Math.,136, Nos. 1–2, 103–239 (1976); Nos. 3–4, 171–239 (1976).

    Google Scholar 

  43. H. Goldschmidt and S. Sternberg, “The Hamilton-Cartan formalism in the calculus of variations,” Ann. Inst. Fourier, Grenoble,23, No. 1, 203–267 (1973).

    Google Scholar 

  44. A. Grothendieck, Elements de Geometrie Algebrique. IV. Etude Locale des Schemas et des Morphismes des Schemas, Publs. Math. Inst. Hautes Etudes Scient.,32 (1967).

  45. R. Hermann, “Cartan's geometric theory of partial differential equations” Adv. Math.,1, No. 3, 265–317 (1965).

    Google Scholar 

  46. E. Kähler, Einführung in die Theorie der Systeme von Differentialgleichungen, Hamburger Math. Einzelschribte,16 (1934).

  47. A. Kumpera, “Invariants differentiels d'un pseudogroupe de Lie,” J. Different. Geom.,10, No. 2, 289–417 (1974).

    Google Scholar 

  48. M. Kuranishi, “On E. Cartan's prolongations theorem of exterior differential systems,” Am. J. Math.,79, No. 1, 1–47 (1957).

    Google Scholar 

  49. M. Kuranishi, Lectures on Exterior Differential Systems, Tata Inst. of Fundamental Research, Bombay (1962).

    Google Scholar 

  50. M. Kuranishi, Lectures on Involutive Systems of Partial Differential Equations, Publ. Soc. Mat. San Paulo, San Paulo (1967).

    Google Scholar 

  51. S. Lie, Gesamelte Abhandlungen, Bd. 4, Teubner, Leipzig (1929).

    Google Scholar 

  52. S. Lie and F. Engel, Theorie der Transformationsgruppen, Bd. 1–3, Teubner, Leipzig, 1886, 1890, 1893.

    Google Scholar 

  53. S. Sternberg, Notes on Partial Differential Equations, Harvard University (1968).

  54. F. Takens, “A global version of the inverse problem of the calculus of variations,” Math. Inst. Rijksuniversiteit Groningen, Preprint No. ZW-7701 (1977).

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Problemy Geometrii, Vol. 11, pp. 89–134, 1980.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, A.M. Geometry of nonlinear differential equations. J Math Sci 17, 1624–1649 (1981). https://doi.org/10.1007/BF01084594

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01084594

Keywords

Navigation