Skip to main content
Log in

Effect of ZrO2 inclusions on fracture properties of MgCr204

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of unstabilized ZrO2 inclusions on the strength, fracture surface energy and thermal-shock resistance of MgCr2O4 have been evaluated. The fracture surface energy for MgCr2O4-ZrO2 composites was observed to depend on the agglomerate particle size distribution, and volume fraction of the ZrO2 inclusions. Large, nonuniformly distributed ZrO2 inclusions tended to produce a relatively small increase in the fracture surface energy of MgCr2O4. The fracture surface energy increased with increasing ZrO2 content to a maximum value of 24.5J m−2 at 16.5 vol % ZrO2, and decreased as the ZrO2 content increased further. It is proposed that this four-fold increase in fracture surface energy results from the absorption of energy due to microcrack formation in the MgCr2O4 matrix, which results primarily from the tensile stresses due to the tetragonal → monoclinic phase transformation of ZrO2 and the associated volume expansion. The improvement in mechanical properties, specifically the four-fold increase in fracture surface energy, resulted in a substantial increase in thermal-shock resistance of MgCr2O4-ZrO2 composites as indicated by the results of thermal-shock experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. Bakker, in Proceedings of the 3rd Annual Conference on Materials for Coal Conversion and Utilization, Gaithersburg, MD, CONF-781018, U.S. Department of Energy, Washington, D.C., p. K103 (1978).

    Google Scholar 

  2. W. D. Kingery,J. Amer. Ceram. Soc. 38 (1955) 3.

    Google Scholar 

  3. B. Brenzy,Amer. Ceram. Soc. Bull. 58 (1979) 679.

    Google Scholar 

  4. J. Nakayama, in “Fracture Mechanics of Ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974) p. 759.

    Google Scholar 

  5. C. R. Kennedy, in Proceedings of the 4th Annual Conference on Materials for Coal Conversion and Utilization, Gaithersburg, Maryland, October 1979, CONF-791014, U.S. Department of Energy, Washington, D.C., (1979) p. K60.

    Google Scholar 

  6. D. Hebden, J. A. Lacey andA. G. Horsler,J. Inst. Gas. Eng. 5 (1965) 367.

    Google Scholar 

  7. “Refractories for Coal Gasification and Combustion Systems”, EPRI Technical Report AP-1268 (July 1980).

  8. “Gas Generator Research and Development: Bi-Gas Process”, Phillips Petroleum Company Quarterly Progress Report, January–March 1978, FE-1207-45 (April 1978) p. 127.

  9. C. R. Kennedy andR. B. Poeppel,Interceram. 27 (1978) 221.

    Google Scholar 

  10. J. A. Bonar, C. R. Kennedy andR. B. Swaroop,Amer. Ceram. Soc. Bull. 59 (1980) 473.

    Google Scholar 

  11. C. R. Kennedy,J. Mater. Energy Syst. 2 (2) (1980) 11.

    Google Scholar 

  12. C. R. Kennedy, “Refractory/Coal-Slag Compatibility Studies: Progress to Date,” presented at the American Ceramics Society Annual Meeting, Washington, D.C. (1981).

  13. J. P. Singh, D. R. Diercks, R. B. Poeppel and G. Bandyopadhyay, “Thermal-Shock Studies on Refractories for Slagging Coal Gasifiers,” Argonne National Laboratory Report, ANL/FE-84-3 (1984).

  14. D. P. H. Hasselman,J. Amer. Ceram. Soc. 52 (1969) 600.

    Google Scholar 

  15. D. P. H. Hasselman, Thermal Stress Crack Stability and Propagation in Severe Thermal Environments, in “Materials Science Research”, Vol. V, “Ceramics in Severe Environments”, edited by W. W. Kriegel and H. Palmour III (Plenum, New York, 1971) p. 89.

    Google Scholar 

  16. J. P. Singh, C. Shih andD. P. H. Hasselman,Commun. Amer. Ceram. Soc. 64 (8) (1981) 106.

    Google Scholar 

  17. D. P. Hasselman andR. M. Fulrath,J. Amer. Ceram. Soc. 49 (1966) 68.

    Google Scholar 

  18. F. F. Lange,Philos. Mag 22 (1970) 983.

    Google Scholar 

  19. Dipak R. Biswas andRichard M. Fulrath,J. Amer. Ceram. Soc. 58 (1975) 526.

    Google Scholar 

  20. N. Claussen,ibid. 59 (1976) 49.

    Google Scholar 

  21. P. F. Becher,ibid. 64 (1981) 37.

    Google Scholar 

  22. N. Claussen andJ. Jahn,ibid. 61 (1978) 94.

    Google Scholar 

  23. R. C. Rossi,Amer. Ceram. Bull. 48 (1969) 736.

    Google Scholar 

  24. R. N. Patil andE. C. Subbarao,J. Appl. Crystallogr. 2 (1969) 281.

    Google Scholar 

  25. W. F. Brown Jr. andJ. E. Srawley, American Society for Testing and Materials Special Technical Publication no. 410, p. 13 (ASTM, Philadelphia, Pennsylvania, 1966).

    Google Scholar 

  26. J. Krautkramer andH. Krautkramer, “Ultrasonic Testing of Materials” (Springer-Verlag, New York, 1983).

    Google Scholar 

  27. R. W. Davidge andT. J. Green,J. Mater. Sci. 3 (1968) 629.

    Google Scholar 

  28. J. Selsing,J. Amer. Ceram. Soc. 44 (1961) 419.

    Google Scholar 

  29. R. Ruh, G. W. Höllenberg, S. R. Skaggs, S. D. Stoddard, F. G. Gac andE. G. Charles,Amer. Ceram. Soc. Bull. 60 (1981) 504.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J.P. Effect of ZrO2 inclusions on fracture properties of MgCr204 . J Mater Sci 22, 2685–2690 (1987). https://doi.org/10.1007/BF01086457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01086457

Keywords

Navigation