Skip to main content
Log in

Finite-zone, almost-periodic solutions in WKB approximations

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

It is shown that the recently discovered finite-zone, almost-periodic solutions may, on the one hand, serve as the foundation for the development of the multiphase WKB method in nonlinear equations (the method of Whitham) and, on the other hand, serve to define Lagrangian manifolds with complex germs which can be (second) quantized in the quasiclassical approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. V. I. Arnol'd, “On the characteristic class entering in quantization conditions,” Funkts. Anal. Prilozhen.,1, No. 1, 1–14 (1967).

    Google Scholar 

  2. V. I. Arnold, Ergodic Problems of Classical Mechanics, W. A. Benjamin (1968).

  3. N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  4. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of the Diffraction of Short Waves. The Method of Standard Problems [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  5. G. Bateman and A. Erdelyi, Higher Transcendental Functions [Russian translation], Nauka, Moscow (1974).

    Google Scholar 

  6. Yu. A. Berezin and V. I. Karpman, “On the nonlinear evolution of perturbations in a plasma and other dispersive media,” Zh. Eksp. Teor. Fiz.,51, No. 3, 1557–1568 (1966).

    Google Scholar 

  7. N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Oscillations [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  8. A. V. Gaponov, L. A. Ostrovskii, and M. I. Rabinovich, “One-dimensional waves in nonlinear systems with dispersion,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,13, No. 2, 163–213 (1970).

    Google Scholar 

  9. A. V. Gurevich and L. P. Pitaevskii, “Decay of an initial discontinuity in the Korteweg-de Vries equation,” Pis'ma Zh. Eksp. Teor. Fiz.,17, No. 5, 268–271 (1973).

    Google Scholar 

  10. S. Yu. Dobrokhotov and V. P. Maslov, “Some applications of the theory of complex germ to equations with a small parameter,” in: Sov. Probl. Mat., Vol. 5 (Itogi Nauki i Tekhniki, VINITI AN SSSR), Moscow (1975), pp. 141–211.

    Google Scholar 

  11. S. Yu. Dobrokhotov and V. P. Maslov, “Asymptotics of spectral boundary-value problem for the non-linear semiconductor equation,” Dokl. Akad. NaukSSSR,243, No. 4, 897–900 (1978).

    Google Scholar 

  12. S. Yu. Dobrokhotov and V. P. Maslov, “Asymptotics of the solution of the mixed problem for the non-linear wave equation h2 □ u + asinhu=0,” Usp. Mat. Nauk,34, No. 3, 225–226 (1979).

    Google Scholar 

  13. S. Yu. Dobrokhotov and V. P. Maslov, “The problem of reflection from the boundary for the equation h2 □ u + asinhu=0 and finite-zone, conditionally periodic solutions,” Funkts. Anal. Prilozhen.,13, No. 3, 79–80 (1973).

    Google Scholar 

  14. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian manifolds,” Usp. Mat. Nauk,31, No. 1, 55–136 (1976).

    Google Scholar 

  15. A. R. Its and V. B. Matveev, “On a class of solutions of the Korteweg-de Vries equations,” in: Probl. Mat. Fiz., No. 8, Leningrad Univ. (1976), pp. 70–92.

  16. V. I. Karpman, Nonlinear Waves in Dispersive Media [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  17. V. A. Kozel and V. P. Kotlyarov, “Almost periodic solutions of the equation utt −Uxx+ sinu = 0,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 878–881 (1976).

    Google Scholar 

  18. V. A. Kozel, “On a class of solutions of the sine-Gordon equation,” in: Vopr. Mat. Fiz. Funkts. Anal., Naukova Dumka, Kiev (1976), pp. 132–139.

    Google Scholar 

  19. V. E. Korepin and L. D. Faddeev, “Quantization of solitons,” Teor. Mat. Fiz., 25 (1975).

  20. J. Cole, Perturbation Methods in Applied Mathematics [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  21. A. D. Krakhnov, “Eigenfunctions concentrated in a neighborhood of a conditionally periodic geodesic,” in: Methods of the Qualitative Theory of Differential Equations, Collection of Papers, No. 1, Gorki (1975), pp. 75–87.

    Google Scholar 

  22. A. D. Krakhnov, “Asymptotics of the eigenvalues of pseudodifferential operators and invariant tori,” Usp. Mat. Nauk,31, No. 3, 217–218 (1976).

    Google Scholar 

  23. I. M. Krichever, “Methods of algebraic geometry in the theory of nonlinear equations,” Usp. Mat. Nauk,32, No. 6, 183–208 (1977).

    Google Scholar 

  24. I. M. Krichever, “Integration of nonlinear equations by methods of algebraic geometry,” Funkts. Anal. Prilozh.,11, No. 1, 15–31 (1977).

    Google Scholar 

  25. I. M. Krichever, “Algebraic curves and nonlinear difference equations,” Usp. Mat. Nauk,33, No. 4, 215–216 (1978).

    Google Scholar 

  26. G. E. Kuzmak, “Asymptotic solutions of nonlinear differential equations of second order with variable coefficients,” Prikl. Mat. Mekh.,23, No. 3, 515–526 (1959).

    Google Scholar 

  27. P. P. Kulish, S. V. Manakov, and L. D. Faddeev, “Comparison of the precise quantum and quasiclassical answers for the nonlinear Schrödinger equation,” Teor. Mat. Fiz.,28, No. 1, 38–45 (1976).

    Google Scholar 

  28. R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  29. S. A. Lomov, “Construction of asymptotic solutions of some problems with parameters,” Izv. Akad. Nauk SSSR, Ser. Mat.,32, No. 4, 884–913 (1968).

    Google Scholar 

  30. S. V. Manakov, “On the complete integrability and stochastization in discrete dynamical systems,” Zh. Eksp. Teor. Fiz.,67, No. 2, 543–555 (1974).

    Google Scholar 

  31. Yu. I. Manin, “Algebraic aspects of nonlinear differential equations,” in: Sov. Probl. Mat., Vol. II (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1978).

    Google Scholar 

  32. V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], Moscow State Univ. (1965).

  33. V. P. Maslov, “The passage as h→0 of the Heisenberg equation into the equations for the dynamics of an ideal gas and quantization of relativistic hydrodynamics,” Teor. Mat. Fiz., No. 3, 378–383 (1969).

    Google Scholar 

  34. V. P. Maslov, Operator Methods [inRussian], Nauka, Moscow (1973).

    Google Scholar 

  35. V. P. Maslov, The Complex WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  36. V. P. Maslov and M. V. Fedoryuk, The Quasiclassical Approximation for the Equations of Quantum Mechanics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  37. R. M. Miura, “The Korteweg-de Vries equationa model equation for nonlinear waves in media with dispersion,” in: Nonlinear Waves [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  38. A.-H. Nayfeh, Perturbation Methods, Wiley (1973).

  39. G. I. Barenblat (ed.), Nonlinear Theory of Wave Propagation [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  40. S. P. Novikov, “The periodicproblem for the Korteweg-de Vries equation,” Funkts. Anal. Prilozhen.,8, No. 3, 54–66 (1974).

    Google Scholar 

  41. L. A. Ostrovskii, “Propagation of wave packets and space-time focusing in a nonlinear medium,” Zh. Eksp. Teor. Fiz.,51, No. 4, 1189–1194 (1966).

    Google Scholar 

  42. L. S. Pontryagin, Ordinary Differential Equations [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  43. E. Scott, Waves in Active and Nonlinear Media in Application to Electronics [Russian translation], Sov. Radio, Moscow (1977).

    Google Scholar 

  44. A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  45. G. B. Whitham, “Waves with dispersion and variational principles,” in: Nonlinear Waves [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  46. G. B. Whitham, Linear and Nonlinear Waves, Wiley (1974).

  47. A. B. Shabat, “On the Korteweg-de Vries equation,” Dokl. Akad. Nauk SSSR,211, No. 6, 1310–1313 (1973).

    Google Scholar 

  48. M. A. Ablowitz and D. Y. Benny, “The evolution of multiphase modes for nonlinear dispersive waves,” Stud. Appl. Math.,49, No. 3, 225–238 (1970).

    Google Scholar 

  49. J. Leray, “Analyse Lagrangienne et mecanique quantique (Notions apparentees a celles de developpement asymptotique et d'indice de Maslov), Inst. de Recherche Mathematique Avancee R. C. P. 25, Strasbourg (1978).

  50. J. C. Luke, “A perturbation method for nonlinear dispersive wave problems,” Proc. R. Soc.,A292, No. 1430, 403–412 (1966).

    Google Scholar 

  51. V. B. Matveev, “Abelian functions and solitons,” Inst. Theor. Phys., Univ. Wroclaw, Preprint No. 373 (1976).

  52. R. M. Miura and M. D. Kruskal, “Application of the nonlinear WKB method to the Korteweg-de Vries equation,” SIAM Appl. Math.,26, No. 2, 376–395 (1974).

    Google Scholar 

  53. A. J. Povsner, “Linear methods in problems of nonlinear differential equations with a small parameter,” Int. J. Nonlinear Mech.,9 (1974).

  54. A. C. Scott, “Waveform stability of the nonlinear Klein-Gordon equation,” Proc. IEEE,57, No. 7, 1338–1339 (1969).

    Google Scholar 

  55. M. Toda, “Waves in a nonlinear lattice,” Progr. Theor. Phys. Suppl.,45, 174–200 (1970).

    Google Scholar 

  56. M. Toda, “Vibration of a chain with nonlinear interaction,” J. Phys. Soc. Jpn.,22, 431–436 (1967).

    Google Scholar 

  57. G. B. Whitham, “A general approach to linear and nonlinear dispersive waves using a Lagrangian,” J. Fluid Mech.,22, No. 2, 273–283 (1965).

    Google Scholar 

  58. G. B. Whitham, “Nonlinear dispersive waves,” Proc. R. Soc.,A283, No. 1393, 283–291 (1965).

    Google Scholar 

  59. G. B. Whitham, “Nonlinear dispersion of water waves,” J. Fluid Mech.,27, 399 (1967).

    Google Scholar 

  60. G. B. Whitham, “Two-timing, variational principles, and waves,” J. Fluid Mech.,44, 373 (1970).

    Google Scholar 

  61. N. J. Zabusky, “A synergetic approach to problems of nonlinear dispersive wave propagation and interaction,” Proc. Symp. on Nonlinear Partial Differential Equations, Univ. of Delaware, Newark, Delaware, 1965, W. F. Ames, ed., Academic Press (1967), p. 223.

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Vol. 15, pp. 3–94, 1980.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrokhotov, S.Y., Maslov, V.P. Finite-zone, almost-periodic solutions in WKB approximations. J Math Sci 16, 1433–1487 (1981). https://doi.org/10.1007/BF01091710

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01091710

Keywords

Navigation