Skip to main content
Log in

Modern methods of the statistical theory of nonequilibrium processes

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

Possible approaches to the construction of nonequilibrium equations from first principles are analyzed: the prescription of the initial state at time t=0 and the investigation of the asymptotics as t→∞ as well as methods of averaging over the initial times or boundary conditions in the distant past. In simple examples, a comparison is made of the methods of the projection operator and the nonequilibrium statistical operator (in two versions) of Kubo-Yokota-Nakajima, Mori, Robertson, Kawasaki-Gunton, Kadanoff-Martin, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. D. Abuladze, L. L. Buishvili, and V. P. Kalashnikov, “The effect of phonon heating on the resonance change of mobility in EPR saturation,” Fiz. Tverd. Tela,13, No. 7, 1981–1989 (1971).

    Google Scholar 

  2. S. A. Al'tshuler, R. M. Valishev, B. I. Kochelaev, and A. Kh. Khasanov, “Investigation of the phonon system for Mandelstam-Brioullin scattering of light under conditions of saturation of magnetic resonance,” Zh. Eksp. Teor. Fiz.,62, No. 2, 639–651 (1972).

    Google Scholar 

  3. R. Kh. Amirov, S. A. Smolyanskii, and L. Sh. Shekhter, “On the theory of quantum kinetic processes in strong variable fields,” Teor. Mat. Fiz.,21, No. 2, 247–256 (1974).

    Google Scholar 

  4. A. I. Akhiezer and S. V. Peletminskii, Methods of Statistical Physics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  5. G. O. Balabanyan and A. D. Khon'kin, “Construction of generalized normal solutions of the kinetic equations for a mixture of gases,” Teor. Mat. Fiz.,18, No. 1, 130–137 (1974).

    Google Scholar 

  6. R. C. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley (1975).

  7. A. G. Bashkirov, “The theory of the Brownian motion caused by fluctuations of the stress tensor of a fluid,” Teor. Mat. Fiz.,30, No. 1, 95–102 (1977).

    Google Scholar 

  8. A. G. Bashkirov and D. N. Zubarev, “Statistical derivation of the Kramers-Fokker-Planck equation,” Teor. Mat. Fiz.,1, No. 3, 407–420 (1969).

    Google Scholar 

  9. N. S. Bendiashvili, L. A. Buishvili, and M. D. Zviadadze, “On the theory of dynamic polarization and relaxation of nuclei in the case of strong saturation,” Fiz. Tverd. Tela,8, No. 10, 2919–2924 (1966).

    Google Scholar 

  10. Kh. M. Bikkin, I. P. Vlakhov, and V. P. Kalashnikov, “The Overhauser effect in the conditions of nonequilibrium kinetic degrees of freedom of conduction electrons,” Fiz. Tverd. Tela,15, No. 9, 2791–2792 (1973).

    Google Scholar 

  11. N. N. Bogolyubov, “Quasimeans in problems of statistical mechanics,” Preprint JINR, p. 781, Dubna (1961); Selected Works in Three Volumes, Naukova Dumka, Kiev,3 (1971), pp. 174–215; in: Statistical Physics and Quantum Field Theory [in Russian], Nauka, Moscow (1973).

  12. N. N. Bogolyubov, “On stochastic processes in dynamical systems,” Fiz. Elem. Chastits At. Yad.,9, No. 4, Atomizdat, Moscow.

  13. N. N. Bogolyubov, Problems of the Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow-Leningrad (1946); Selected Works in Three Volumes, Vol. 2, Naukova Dumka, Kiev (1970).

    Google Scholar 

  14. N. N. Bogolyubov and N. M. Krylov, “On the Fokker-Planck equations obtained in perturbation theory by a method based on the spectral properties of the Hamiltonian of the perturbations,” Zap. Kafedry Mat. Fiz. Inst. Budivel'noi Mekh. Akad. Nauk Ukr. SSR,4, 5–80 (1939).

    Google Scholar 

  15. N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], 4th ed., Nauka, Moscow (1974).

    Google Scholar 

  16. N. N. Bogolyubov (Jr.), A Method of Investigating Model Hamiltonians [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  17. N. N. Bogolyubov (Jr.) and B. I. Sadovnikov, Some Questions of Statistical Mechanics [in Russian], Vysshaya Shkola, Moscow (1975).

    Google Scholar 

  18. R. Braut, Phase Transitions [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  19. L. L. Buishvili, “On the quantum-statistical theory of dynamic polarization of nuclei,” Zh. Eksp. Teor, Fiz.,49, No. 6 (12), 1868–1874 (1965).

    Google Scholar 

  20. L. L. Buishvili and G. A. Volgina, “On the theory of saturation of the lines of nuclear quadrupole resonance,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,12, No. 12, 1805–1810 (1969).

    Google Scholar 

  21. L. L. Buishvili and N. P. Giorgadze, “On the quantum-statistical theory of spin diffusion,” Dokl. Akad. Nauk SSSR, Ser. Fiz.,189, No. 3, 508–510 (1969).

    Google Scholar 

  22. L. L. Buishvili, N. P. Giorgadze, and A. A. Davituliani, “On the saturation of an inhomogeneous broad EPR line at low temperatures,” Zh. Eksp. Teor. Fiz.,67, No. 1 (7), 161–167 (1974).

    Google Scholar 

  23. L. L. Buishvili, N. P. Giorgadze, and M. D. Zviadadze, “On cross relaxation between the Zeeman and spin-spin degrees of freedom,” Zh. Eksp. Teor. Fiz.,72, No. 2, 750–755 (1977).

    Google Scholar 

  24. L. L. Buishvili, N. P. Giorgadze, and G. R. Khutsishvili, “The quantum-statistical theory of dynamic polarization of nuclei in the case of inhomogeneous broadening,” Zh. Eksp. Teor. Fiz.,54, No. 3, 876–890 (1968).

    Google Scholar 

  25. L. L. Buishvili, N. P. Giorgadze, and G. R. Khutsishvili, “The role of spectral diffusion and the d-d reservoir in the saturation of inhomogeneous line broadening,” Zh. Eksp. Teor. Fiz.,56, No. 1, 290–298 (1969).

    Google Scholar 

  26. L. L. Buishvili and D. N. Zubarev, “The statistical theory of nuclear spin diffusion,” Fiz. Tverd. Tela,7, No. 3, 722–729 (1965).

    Google Scholar 

  27. I. L. Bukhbinder and A. R. Kessel',“The theory of saturation of nuclear quadrupole resonance,” Fiz. Tverd. Tela,14, No. 11, 3192–3199 (1972).

    Google Scholar 

  28. I. L. Bukhbinder, A. R. Kessel', and T. N. Khazanovich, “Statistical derivation of the kinetic equation for a subsystem in a ‘viscous medium,’” Teor. Mat. Fiz.,23, No. 1, 121–131 (1975).

    Google Scholar 

  29. N. Wiener, Fourier Integral and Certain of Its Applications, Dover (1933).

  30. V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker (1971).

  31. J. Gibbs, Basic Principles of Statistical Mechanics [Russian translation], Gostekhizdat, Moscow (1946), Chap. XII.

    Google Scholar 

  32. S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics, Elsevier (1962).

  33. V. A. Ditkin and P. I. Kuznetsov, Handbook on Operator Calculus [in Russian], Gostekhizdat, Moscow-Leningrad (1951), p. 14.

    Google Scholar 

  34. J. L. Doob, Stochastic Processes, Wiley (1953).

  35. D. N. Zubarev, “Boundary conditions for statistical operators in the theory of nonequilibrium processes and quasi means,” Teor. Mat. Fiz.,3, No. 2, 276–286 (1970).

    Google Scholar 

  36. D. N. Zubarev, “Two-time Green functions in statistical physics,” Usp. Fiz. Nauk,71, No. 1, 71–116 (1960).

    Google Scholar 

  37. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [inRussian], Nauka, Moscow (1971).

    Google Scholar 

  38. D. N. Zubarev, “Nonequilibrium statistical operators and quasimeans in the theory of irreversible processes,” in: Statistical Physics and Quantum Field Theory [in Russian], N. N. Bogolyubov (ed.), Nauka, Moscow (1973), pp. 81–96.

    Google Scholar 

  39. D. N. Zubarev, “The statistical operator for nonequilibrium systems,” Dokl. Akad. Nauk SSSR, Ser. Fiz.,140, No. 1, 92–95 (1961).

    Google Scholar 

  40. D. N. Zubarev, “The statistical operator for nonstationary processes,” Dokl. Akad. Nauk SSSR, Ser. Fiz.,164, No. 3, 537–540 (1965).

    Google Scholar 

  41. D. N. Zubarev and V. P. Kalashnikov, “Construction of statistical operators for nonequilibrium processes,” Teor. Mat. Fiz.,3, No. 1, 126–134 (1970).

    Google Scholar 

  42. D. N. Zubarev and V. P. Kalashnikov, “Perturbation theory and integral equations for nonequilibrium statistical operators,” Teor. Mat. Fiz.,5, No. 3, 406–416 (1970).

    Google Scholar 

  43. D. N. Zubarev and V. P. Kalashnikov, “Equivalence of several methods in the statistical mechanics of nonequilibrium processes,” Teor. Mat. Fiz.,7, No. 3, 372–393 (1971).

    Google Scholar 

  44. D. N. Zubarev and M. Yu. Novikov, “A generalized formulation of the boundary condition for the Liouville equation and the chain B-B-G-K-I,” Teor. Mat. Fiz.,13, No. 3, 406–419 (1972).

    Google Scholar 

  45. D. N. Zubarev and M. Yu. Novikov, “Renormalized kinetic equations for a system with weak interaction and for a gas of low density,” Teor. Mat. Fiz.,19, No. 2, 237–251 (1974).

    Google Scholar 

  46. D. N. Zubarev and A. M. Khazanov, “The generalized Fokker-Planck equation and the construction of projection operators for various methods of the abbreviated description,” Teor. Mat. Fiz.,34, No. 1, 69–80 (1978).

    Google Scholar 

  47. D. N. Zubarev and A. D. Khon'kin, “A method of constructing normal solutions of kinetic equations with the help of boundary conditions,” Teor. Mat. Fiz.,11, No. 3, 403–412 (1972).

    Google Scholar 

  48. V. P. Kalashnikov, “The kinetics of hot electrons in quantum magnetic fields,” Teor. Mat. Fiz.,6, No. 2, 279–293 (1971).

    Google Scholar 

  49. V. P. Kalashnikov, “Linear relaxation equations in the method of the nonequilibrium statistical operator,” Teor. Mat. Fiz.,34, No. 3, 412–425 (1978).

    Google Scholar 

  50. V. P. Kalashnikov, “Equations of motion, Green functions, and the thermodynamic relations in theories of linear relaxation with various collections of macroscopic variables,” Teor. Mat. Fiz.,35, No. 1, 127–138 (1978).

    Google Scholar 

  51. M. Kac, Some Probabilistic Problems of Mathematics and Physics [in Russian], Nauka, Moscow (1967), Lecture I, Classical Paradoxes.

    Google Scholar 

  52. Yu. L. Klimontovich, The Kinetic Theory of a Nonideal Gas and a Nonideal Plasma [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  53. Yu. L. Klimontovich, Statistical Theory of Nonequilibrium Processes in a Plasma [in Russian], Moscow State Univ. (1964).

  54. Yu. L. Klimontovich, “The H-theorem for a nonideal gas,” Zh. Eksp. Teor. Fiz.,63, No. 1 (7), 150–156 (1972).

    Google Scholar 

  55. V. A. Kovarskii, E. A. Popov, I. A. Chaikovskii, and N. F. Perel'man, “The effects of heating in the interaction of powerful laser perturbation with local electrons,” Fiz. Tverd. Tela,16, No. 3, 943–944 (1974).

    Google Scholar 

  56. M. A. Leontovich, Statistical Physics [inRussian], Moscow-Leningrad (1944).

  57. O. G. Mishnev, “Formulation of the dynamical theory of fluctuation by the method of the nonequilibrium statistical operator,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 145–146 (1977).

    Google Scholar 

  58. V. G. Morozov, “The equation of hydrodynamics and the kinetic coefficients of a superfluid Bose liquid,” Teor. Mat. Fiz.,28, No. 2, 267–280 (1976).

    Google Scholar 

  59. V. B. Nemtsov, “The statistical theory of hydrodynamics and kinetic processes in liquid crystals,” Teor. Mat. Fiz.,25, No. 1, 118–131 (1975).

    Google Scholar 

  60. S. V. Peletminskii and A. A. Yatsenko, “On the quantum theory of kinetic and relaxation processes,” Zh. Eksp. Teor. Fiz.,53, No. 4 (10), 1327–1339 (1967).

    Google Scholar 

  61. L. A. Pokrovskii, “The method of the nonequilibrium statistical operator in the theory of a single-mode laser on two-level atoms,” Teor. Mat. Fiz.,37, No. 1, 102–117 (1978).

    Google Scholar 

  62. L. A. Pokrovskii, “Obtaining generalized kinetic equations by means of the nonequilibrium statistical operator,” Dokl. Akad. Nauk SSSR, Ser. Fiz.,183, 806–810 (1968).

    Google Scholar 

  63. I. Prigogine, Nonequilibrium Statistical Mechanics [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  64. A. V. Prozorkevich and S. A. Smolyanskii, “Derivation of the relativistic equations of a plasma in a strong electromagnetic field,” Teor. Mat. Fiz.,23, No. 3, 409–416 (1975).

    Google Scholar 

  65. Yu. V. Prokhorov and Yu. A. Rozanov, Probability Theory. Basic Concepts. Limit Theorems. Stochastic Processes [in Russian], 2nd ed., Nauka, Moscow (1973).

    Google Scholar 

  66. Yu. B. Rumer and M. Sh. Ryvkin, Thermodynamics, Statistical Physics, and Kinetics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  67. M. V. Sergeev, “Generalized transport equations in the theory of irreversible processes,” Teor. Mat. Fiz.,21, No. 3, 402–414 (1974).

    Google Scholar 

  68. S. V. Tishchenko, “Construction of generalized hydrodynamics by the method of the nonequilibrium statistical operator,” Teor. Mat. Fiz.,26, No. 1, 96 (1976).

    Google Scholar 

  69. S. V. Tishchenko, “A direct proof of the equivalence of two forms of the nonequilibrium statistical operator,” Teor. Mat. Fiz.,25, No. 3, 407–409 (1975).

    Google Scholar 

  70. S. V. Tyablikov, Methods of the Quantum Theory of Magnetism [in Russian], 2nd ed., Nauka, Moscow (1965).

    Google Scholar 

  71. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, Elsevier (1972).

  72. S. Fudzita, Introduction to Nonequilibrium Quantum Statistical Mechanics [Russian translation], Mir, Moscow (1969).

    Google Scholar 

  73. E. Zermelo, “On a proposition of dynamics in connection with the mechanical theory of heat,” in: Ludwig Boltzmann. Papers and Addresses [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  74. S. Chapman and T. Cowling, Mathematical Theory of Inhomogeneous Gases.

  75. J. Chester, Theory of Irreversible Processes [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  76. S. Schweber, Introduction to Relativistic Quantum Field Theory [Russian translation], IL, Moscow (1963).

    Google Scholar 

  77. A. Einstein and M. Smolukhovskii, Brownian Motion [in Russian], ONTI, Moscow (1936).

    Google Scholar 

  78. H. C. Andersen and I. Oppenheim, “Derivation of the Boltzman equation for a dilute quantum-mechanical, slightly inhomogeneous gas,” Ann. Phys.,48, No. 1, 1–42 (1968).

    Google Scholar 

  79. A. G. Bashkirov and D. N. Zubarev, “The generalized Kramers-Fokker-Planck equation,” Physica,48, No. 1, 137–144 (1970).

    Google Scholar 

  80. N. N. Bogoliubov, “On some problems of the theory of superconductivity,” Suppl. Phys.,26, 1–23 (1960).

    Google Scholar 

  81. J. Bosse, W. Götze, and M. Lucke, “Mode-coupling theory of simple classical liquids,” Phys. Rev.,A17, No. 1, 434–446 (1978).

    Google Scholar 

  82. J. Bosse, W. Götze, and A. Zippelius, “Velocity-autocorrelation spectrum of simple classical liquids, Phys. Rev.,A18, No. 3, 1214–1221 (1978).

    Google Scholar 

  83. L. L. Buishvili, N. P. Giorgadze, and A. I. Ugulava, “Phonon bottleneck effect on saturation of inhomogeneously broadened magnetic resonance lines,” Physica,71, 1961 (1974).

    Google Scholar 

  84. L. L. Buishvili and M. D. Zwiadadze, “On the theory of magnetic resonance saturation in solids,” Phys. Lett.,24A, No. 12, 661–662 (1967).

    Google Scholar 

  85. L. L. Buishvili, M. D. Zwiadadze, and N. Fokina, “Relaxation and nuclear dynamic polarization in the case of inhomogeneous EPR broadening,” Phys. Status, Solidi,54, 401 (1972).

    Google Scholar 

  86. I. L. Bukhbinder, I. S. Donskaya, and A. R. Kessel, “Kinetic equations for the dilute solid paramagnets,” Physica,74, 75 (1974).

    Google Scholar 

  87. E. G. Cohen and T. N. Berlin, “Note on the derivation of the Boltzmann equation from the Liouville equation,” Physica,26, No. 9, 717–729 (1960).

    Google Scholar 

  88. T. and P. Ehrenfest, “Begriffliche Grundlagen der statistische Auffassung in der Mechanik,” Encykl. Math. Wiss.,4, 4. Teilband, Art. 32 (1911).

  89. A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geförderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys.,17, 549 (1905).

    Google Scholar 

  90. I. Goldstone, “Field theories with ‘superconductor solution,’” Nuovo Cimento,19, No. 1, 154–164 (1961).

    Google Scholar 

  91. W. Götze and M. Lücke, “Dynamical current correlation functions of simple classical liquids for intermediate wave numbers,” Phys. Rev.,A11, No. 6, 2173–2190 (1975).

    Google Scholar 

  92. H. Green, The Molecular Theory of Fluids, Oxford Univ. Press (1953).

  93. M. S. Green, “Markoff random processes and the statistical mechanics of time-dependent phenomena,” J. Chem. Phys.,20, No. 8, 1281–1295 (1952).

    Google Scholar 

  94. M. S. Green, “Markoff random processes and the statistical mechanics of time-dependent phenomena,” J. Chem. Phys.,22, No. 3, 381–413 (1952).

    Google Scholar 

  95. K. E. Gubbins, “Thermal transport coefficients for simple dense fluids,” in: Statistical Mechanics. A review of the recent literature published up to July 1972, The Chem. Soc., Burlington House, London (1973), pp. 194–256.

    Google Scholar 

  96. A. Hashitsume, “Statistical theory of linear dissipative systems,” Prog. Theor. Phys.,8, No. 4, 361–478 (1952).

    Google Scholar 

  97. E. Helfand, “Theory of molecular friction constant,” Phys. Fluids,4, No. 6, 681–691 (1961).

    Google Scholar 

  98. E. Helfand, “Transport coefficients from dissipation in the canonical ensemble,” Phys. Rev.,119, No. 1, 1–9 (1960).

    Google Scholar 

  99. L. van Hove, “Quantum-mechanical perturbations giving rise to a statistical transport equation,” Physica,21, 517 (1955); in: Questions of the Quantum Theory of Irreversible Processes [Russian translation], IL, Moscow (1961).

    Google Scholar 

  100. E. T. Jaynes, “Information theory and statistical mechanics. I,” Phys. Rev.,106, No. 4, 620–630 (1957); II, Phys. Rev.,108, No. 2, 171–190 (1957).

    Google Scholar 

  101. E. T. Jaynes, “Information theory and statistical mechanics,” in: Statistical Physics, Brandeis Lectures,3, 160 (1963).

    Google Scholar 

  102. E. T. Jaynes, “Gibbs vs Boltzmann entropies,” Am. J. Phys.,33, No. 5, 391–398 (1965).

    Google Scholar 

  103. J. Jedrzejewski and T. Paszkiewicz, “Nonlinear paramagnetic relaxation. I. The light scattering on nonequilibrium phonons,” J. Phys.,9, 511–524 (1976); “II. Properties of kinetic equations solutions for two-level systems,” J. Phys.,9, No. 3, 525–534 (1976).

    Google Scholar 

  104. L. P. Kadanoff and P. S. Martin, “Hydrodynamic equations and correlation functions,” Ann. Phys.,24, No. 10, 419–469 (1963).

    Google Scholar 

  105. V. P. Kalashnikov, “Nonequilibrium statistical operator in hot-electron theory,” Physica,48, No. 1, 93–111 (1970).

    Google Scholar 

  106. N. van Kampen, “The definition of entropy in nonequilibrium states,” Physica,25, No. 12, 1294–1302 (1959).

    Google Scholar 

  107. N. van Kampen, “Quantum statistics of irreversible processes,” Physica,20, No. 9, 603–622 (1954);23, 806 (1957).

    Google Scholar 

  108. K. Kawasaki, “Kinetic equations and time correlation functions of critical fluctuation,” Ann. Phys.,61, 1–56 (1970); Critical Phenomena, Proc. Int. School Phys. “Enrico Fermi,” Course 51, Academic Press, New York-London (1971).

    Google Scholar 

  109. K. Kawasaki and J. D. Gunton, “Theory of nonlinear shear viscosity and normal stress effects,” Phys. Rev.,8A, No. 4, 2048–2064 (1973).

    Google Scholar 

  110. J. G. Kirkwood, “The statistical mechanical theory of transport processes. I. General theory,” J. Chem. Phys.,14, 180 (1946).

    Google Scholar 

  111. J. G. Kirkwood, “The statistical mechanical theory of transport processes, II. Transport in gases,” J. Chem. Phys.,15, 72 (1946).

    Google Scholar 

  112. V. A. Kovarskii, E. A. Popov, and I. A. Chaikovskii, “Radiative and nonradiative transition of electrons in local centers involving hot phonons,” Phys. Status Solidi, (b),67, 427–433 (1975).

    Google Scholar 

  113. R. Kubo, “Linear response theory of irreversible processes. Statistical mechanics of equilibrium and nonequilibrium,” Proc. Int. Symp. on Statistical Mechanics and Thermodynamics, Aachen, 1964, J. Meixner, ed. (1965), pp. 81–99.

  114. R. Kubo, “Statistical mechanical theory of irreversible processes. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn.,12, No. 6, 570–586 (1957).

    Google Scholar 

  115. R. Kubo, M. Yokota, and S. Nakajima, “Statistical mechanical theory of irreversible processes, II. Response to thermal disturbance,” J. Phys. Soc. Jpn.,12, No. 11, 1203–1211 (1957).

    Google Scholar 

  116. L. Lanz and G. Lupieri, “Dynamics of macroobservables and space-time inhomogeneous Gibbs ensembles,” Nuovo Cimento,47B, No. 2, 201 (1978).

    Google Scholar 

  117. M. Lax, “Generalized mobility theory,” Phys. Rev.,109, No. 6, 1921–1926 (1958).

    Google Scholar 

  118. J. M. Luttinger, “Theory of thermal transport coefficients,” Phys. Rev.,135A, No. 6A, 1505–1514 (1964).

    Google Scholar 

  119. D. A. McQuarrie, Statistical Mechanics, New York (1976).

  120. J. A. McLennan, “The formal statistical theory of transport processes,” Adv. Chem. Phys.,5, 261–317 (1963).

    Google Scholar 

  121. P. Partin, “Nonlocal transport coefficients and correlation functions in statistical mechanics of equilibrium and nonequilibrium,” Proc. Int. Sympos., Aachen, 1964, J. Meixner, ed., 100–125 (1965).

  122. N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models,” Phys. Rev. Lett.,17, No. 22, 1133–1136 (1966).

    Google Scholar 

  123. E. W. Montroll, “Some remarks on the integral equation of statistical mechanics,” Fundamental Problems in Statistical Mechanics, North-Holland, Amsterdam (1962); Summer course held in August 1962, pp. 230–249.

    Google Scholar 

  124. H. Mori, “A quantum-statistical theory of transport processes,” J. Phys. Soc. Jpn.,11, 1029 (1956).

    Google Scholar 

  125. H. Mori, “Correlation function method for transport phenomena,” Phys. Rev.,115, 298 (1959).

    Google Scholar 

  126. H. Mori, “Statistical-mechanical theory of transport in fluids,” Phys. Rev.,112, 1829–1842 (1958).

    Google Scholar 

  127. H. Mori, “Transport, collective motion and the Brownian motion,” Prog. Theor. Phys.,33, No. 3, 423–455 (1965).

    Google Scholar 

  128. V. G. Morozov, “Microscopic theory of hydrodynamic modes in a planer ferromagnet,” Physiea,90A, No. 2, 196–214 (1978).

    Google Scholar 

  129. S. Nakajima, “On quantum theory of irreversible processes,” Rend. Scuola Int. Fisica “Enrico Fermi,” 10 corso, Varenna, 1959, Bologna (1960).

  130. S. Nakajima, “On quantum theory of transport phenomena,” Prog. Theor. Phys.,20, 948 (1958).

    Google Scholar 

  131. V. B. Nemtsov, “Statistical hydrodynamics of cholesteric liquid crystals,” Physica,86A, No, 3, 513–534 (1977).

    Google Scholar 

  132. W. Pauli, “Über das H-Theorem anwachsen der Entropie von Standpunkt der neuen Quantenmechanik,” Probleme der moderne Physik, Arnold Sommerfeld zum 60 Geburtstag gewindmet von seinen Schülern, Leipzig (1928), p. 30.

  133. Y. Pomeau and P. Resibois, “Time dependent correlation functions and mode-mode coupling theories,” Physics Report B,19, 63 (1975).

    Google Scholar 

  134. I. Prigogine and P. Resibois, “On the kinetics of the approach to equilibrium,” Physica,27, No. 7, 629–646 (1961).

    Google Scholar 

  135. P. Resibois, “On the approach to equilibrium in quantum systems,” Physica,27, No. 6, 541–570 (1961).

    Google Scholar 

  136. S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids, New York (1966).

  137. B. Robertson, “Equations of motion in nonequilibrium statistical mechanics,” Phys. Rev.,144, No. 1, 151–161 (1966).

    Google Scholar 

  138. B. Robertson, “Equations of motion in nonequilibrium statistical mechanics. II. Energy transport,” Phys. Rev.,160, No. 1, 175–183 (1967).

    Google Scholar 

  139. G. Röpke and A. Zehe, “Observation of nonequilibrium states from the line shape of electron induced recombination radiation,” Phys. Status Solidi (A),23, K137-K141 (1974).

    Google Scholar 

  140. H. Schwegler, “Verallgemeinerte physicalische Entropien auf informationstheoretische Grundlage,” Z. Natur. Forsch.,20a, Heft 12, 1543–1553 (1965).

    Google Scholar 

  141. G. L. Sewel, “Quantum-statistical theory of irreversible processes. Dynamics of gross variables,” Physica,31, No. 10, 1520–1536 (1965).

    Google Scholar 

  142. R. B. Stinchcombe, “Kubo and Zubarev formulations of response theory,” in: Correlation Functions and Quasiparticle Interaction in Condensed Matter, J. W. Woods Hally, ed., Plenum Press, New York-London (1977), pp. 3–44.

    Google Scholar 

  143. A. Suddaby and P. Gray, “Relations between the friction constant and the force correlation integral in Brownian movement theory,” Proc. Phys. Soc.,75, Pt. 1, No. 481, 109–118 (1960).

    Google Scholar 

  144. D. ter Haar, Lectures on Selected Topics in Statistical Mechanics, Pergamon Press (1977).

  145. S. V. Tishchenko, “The equivalence of the Kawasaki-Gunton phase space distribution function and Zubarev's nonequilibrium statistical operator,” Phys. Lett.,50A, No. 1, 7–8 (1974).

    Google Scholar 

  146. H. Wagner, “Long-wavelength excitation and the Goldstone theorem in many-particle systems with ‘broken symmetry,’” Z. Phys.,195, Heft P, 273–299 (1966).

    Google Scholar 

  147. C. R. Willis and R. H. Picard, “Time-dependent projector-operator approach to the master equation for coupled systems,” Phys. Rev.,9A, 1343 (1974).

    Google Scholar 

  148. D. N. Zubarev, “Grenzbedingungen für statistische Operatoren in der Theorie der Nichtgleichgewichts prozesse und das Quasimittel,” Fortschritte d. Physik,20, No. 8, 485–495 (1972).

    Google Scholar 

  149. D. N. Zubarev, “Nichtgleichgewichts-statistische operatoren und quasimittelung in der theorie irreversibler prozesses,” Fortsch. Phys.,20, No. 8, 471–484 (1972).

    Google Scholar 

  150. D. N. Zubarev, “The method of the nonequilibrium statistical operator and its applications. I,” Fortsch. Physik,18, No. 3, 125–147 (1970).

    Google Scholar 

  151. D. N. Zubarev and V. P. Kalashnikov, “The derivation of time-irreversible generalized master equation,” Physica,56, 345–364 (1971).

    Google Scholar 

  152. D. N. Zubarev and M. Ju. Novikov, “Die Boltzmanngleichung und mögliche Wege zur Entwicklung dynamischer Methoden in der kinetische Theorie,” Fortsch. Phys.,21, No. 12, 703–734 (1973).

    Google Scholar 

  153. D. N. Zubarev and S. V. Tishchenko, “Nonlocal hydrodynamics with memory,” Physica,59, 285–304 (1972).

    Google Scholar 

  154. R. Zwanzig, “Elementary derivation of time-correlation formulas for transport coefficients,” J. Chem.,40, No. 9, 2527–2533 (1964).

    Google Scholar 

  155. R. Zwanzig, “Ensemble method in the theory of irreversibility,” J. Chem. Phys.,33, No. 5, 1338–1341 (1960).

    Google Scholar 

  156. R. Zwanzig, “Memory effects in irreversible thermodynamics,” Phys. Rev.,124, No. 4, 983–992 (1961).

    Google Scholar 

  157. R. Zwanzig, “On the identity of three generalized master equations,” Physica,30, 1109–1123 (1964).

    Google Scholar 

  158. R. Zwanzig, “Statistical mechanics of irreversibility,” Lectures in Theoretical Physics (Boulder), Vol. 3, Wiley-Interscience, New York-London (1960), pp. 106–141.

    Google Scholar 

  159. R. Zwanzig, “Time-correlation functions and transport coefficients in statistical mechanics,” Ann. Rev. Phys. Chem.,16, 67–102 (1965).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Vol. 15, pp. 131–226,1980.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubarev, D.N. Modern methods of the statistical theory of nonequilibrium processes. J Math Sci 16, 1509–1571 (1981). https://doi.org/10.1007/BF01091712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01091712

Keywords

Navigation