Skip to main content
Log in

Crack growth in transforming ceramics under cyclic tensile loads

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanisms of stable growth of short fatigue cracks (crack length up to 1 mm) at room temperature in magnesia-partially stabilized zirconia subjected to cyclic tensile loads were investigated. Single edge-notched specimens were fractured in the four-point bend configuration under cyclic and quasi-static tensile loads. At a load ratio of 0.1, the threshold stress intensity factor range, ΔK, for fracture initiation in cyclic tension is as low as 3.4 M Pam1/2, and catastrophic failure occurs at ΔK=6.6 M Pam1/2. For crack length less than 1 mm and for plane strain conditions, growth rates are highly discontinuous, and periodic crack arrest is observed after growth over distances of the order of tens of micrometres. Crack advance could only be resumed with an increase in the far-field stress intensity range. The mechanisms of short crack advance in cyclic tension are similar to those observed under quasi-static loads, and the tensile fatigue effect appears to be a manifestation of “static failure modes”. A model is presented to provide an overall framework for the tensile fatigue crack growth characteristics of partially stabilized zirconia. Experimental results are also described to demonstrate the possibility of stable room temperature crack growth under cyclic tension in fine-grained tetragonal zirconia polycrystals, partially stabilized with Y2O3. The growth of cracks in transformation-toughened ceramics is found to be strongly influenced by the crack size and shape, stress state and specimen geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Transfromation Toughening”, Special Issue ofJ. Amer. Ceram. Soc. 66 (3) (1986).

  2. D. A. Krohn andD. P. H. Hasselman,J. Amer. Ceram. Soc. 55 (1972) 208.

    Google Scholar 

  3. F. Guiu,J. Mater. Sci. 13 (1978) 1357.

    Google Scholar 

  4. A. G. Evans andM. Linzer,Int. J. Fract. 12 (1976) 217.

    Google Scholar 

  5. A. G. Evans andE. R. Fuller,Metall. Trans. 5A (1974) 27.

    Google Scholar 

  6. A. G. Evans,Inter. J. Fract. 16 (1980) 485.

    Google Scholar 

  7. L. Ewart andS. Suresh,J. Mater Sic. Lett. 5 (1986) 774.

    Google Scholar 

  8. Idem, J. Mater. Soc. 22 (1987) 1173.

    Google Scholar 

  9. S. Suresh,Engng Fract. Mech. 21 (1985) 453.

    Google Scholar 

  10. S. Suresh andL. A. Sylva,Mater. Sci. Engng 83 (1986) L7.

    Google Scholar 

  11. J. R. Brockenbrough andS. Suresh,J. Mech. Phys. Solids 35 (1987) 721.

    Google Scholar 

  12. S. Suresh andJ. R. Brockenbrough,Acta Metall. 36 (1988) in press.

  13. S. Suresh, L. Ewart, M. Maden, W. Slaughter andM. Nguyen,J. Mater. Sci. 22 (1987) 1271.

    Google Scholar 

  14. A. G. Evans andR. M. Cannon,Acta. Metall. 34 (1986).

  15. M. V. Swain, “R-Curve Behaviour of Mg-PSZ and Its significance to Thermal Shock”, NILCRA Ceramics, St Charles, Illinois (1986).

    Google Scholar 

  16. D. B. Marshall,J. Amer. Ceram. Soc. 66 (1986) 173.

    Google Scholar 

  17. R. M. McMeeking andA. G. Evans,ibid. 65 (1982) 242.

    Google Scholar 

  18. B. Budiansky, J. W. Hutchinson andJ. C. Lambropoulos,Int. J. Solids Struct. 19 (1983) 337.

    Google Scholar 

  19. J. C. Lambropoulos,Int. J. Solids Struct. 22 (1986).

  20. I.-W. Chen andP. E. Reyers-Moral,J. Amer. Ceram. Soc. 65 (1982) 242.

    Google Scholar 

  21. M. V. Swain andV. Zelizko, “Rotating Bending Fatigue of Mg-PSZ”, CSIRO report, Available as NILCRA Report, Nilcra Ceramics, St Charles Illinois (1986).

    Google Scholar 

  22. K. Bowen, P. E. Reyers-Moral andI. W. Chen, in Proceedings MRS Symposium on Advanced Ceramics, Boston, December 1986, edited by P. F. Becker and M. V. Swain (The Materials Research Society, Boston, 1988) in press.

    Google Scholar 

  23. R. H. Dauskardt, W. Yu andR. O. Ritchie,Commun. J. Amer. Ceram. Soc. 70 (1987) C248.

    Google Scholar 

  24. K. P. L. Kavishe,Int. J. Fract. 27 (1985) R13.

    Google Scholar 

  25. D. L. Porter andA. H. Heuer,J. Amer. Ceram. Soc. 60 (1977) 1983.

    Google Scholar 

  26. L. Schoenlein, MS thesis, Case Western Reserve University, Cleveland (1979).

    Google Scholar 

  27. N. Claussen andF. Ruhle, unpublished results, University of California, Santa Barbara (1986).

  28. A. H. Heven, Research in progress, Case Western Reserve University, Cleveland (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sylva, L.A., Suresh, S. Crack growth in transforming ceramics under cyclic tensile loads. J Mater Sci 24, 1729–1738 (1989). https://doi.org/10.1007/BF01105698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01105698

Keywords

Navigation