Skip to main content
Log in

Biosynthesis and metabolism of abscisic acid in tomato leaves infected withBotrytis cinerea

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Two virulent strains ofBotrytis cinerea Pers., one of them (Bc 6) producing abscisic acid (ABA) via 1′,4′-trans-diol-ABA in defined liquid culture, and a second strain (Bc 9) without the ability to form ABA or its fungal precursor, and two near-isogenic lines of tomato were used to study the biosynthesis and metabolism of ABA in infected isolated leaves. The tomato plants used wereLycopersicon esculentum Mill. cv. Ailsa Craig (wild type) and the ABA-deficient mutantflacca. The level of 1′,4′-trans-diol-ABA increased in Ailsa Craig andflacca leaves in a similar pattern to about 4 μg·(gDW)−1 after conidiospore infection with Bc 6, but not after infection with Bc 9. Pulse-feeding experiments showed that [214-C]-1′,4′-trans-diol-ABA was metabolised to ABA and to further plant metabolites of ABA (phaseic acid, dihydrophaseic acid and polar compounds) in both uninfected and infected leaves. Following infection, the turnover of 1′,4′-trans-diol-ABA was reduced. The level of endogenous ABA in leaves infected with the ABA-producing strain Bc 6 rose more than tenfold in Ailsa Craig and twofold inflacca, respectively. Infection of Ailsa Craig leaves with Bc 9 caused a fivefold increase in ABA, and no increase of ABA inflacca. It is concluded that at least four processes control the level of ABA in wild-type tomato leaves infected withBotrytis cinerea: stimulation of fungal ABA biosynthesis by the host; release of ABA or its precursor by the fungus; stimulation of biosynthesis of plant ABA by the fungus; inhibition of its metabolism by the fungus. Application of ABA together with fungal spores to tomato leaves caused a faster development of necrotic leaf area than spore inoculation only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

t-ABA:

2-trans-abscisic acid

DPA:

4′-dihydro abscisic acid

Me:

methylester

PA:

phaseic acid

References

  • Assante, G., Merlini, L., Nasini, G. (1977) (+)-Abscisic acid, a metabolite of the fungusCercospora rosicola. Experientia33, 1556–1557

    Google Scholar 

  • Bennett, R.D., Norman, S.M., Maier, V.P. (1981) Biosynthesis of abscisic acid from [1,213-C2] acetate inCercospora rosicola. Phytochemistry20, 2334–2344

    Google Scholar 

  • Bennett, R.D., Norman, S.M., Maier, V.P. (1984) Biosynthesis of abscisic acid from farnesol derivatives inCercospora rosicola. Phytochemistry23, 1913–1915

    Google Scholar 

  • Crocoll, C., Kettner, J., Dörffling, K. (1991) Abscisic acid in saprophytic and parasitic species of fungi. Phytochemistry30, 1059–1060

    Google Scholar 

  • Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsch, H., Bothe, H. (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J. Plant Physiol.141, 33–39

    Google Scholar 

  • Dörffling, K., Petersen, W., Sprecher, E., Urbasch, I., Hanssen, H.P. (1984) Abscisic acid in phytopathogenic fungi of the generaBotrytis, Ceratocystis, Fusarium, andRhizoctonia. Z. Naturforsch.39, 683–684.

    Google Scholar 

  • Edwards, H.H. (1983) Effect of kinetin, abscisic acid, and cations on host-parasite relations of barley inoculated withErysiphegraminis f. sp.hordei. Phytopath. Z.107, 22–30

    Google Scholar 

  • Henfling, J.W.D.M., Bostock, R., Kuc, J. (1980) Effect of abscisic acid on rishitin and lubimin accumulation and resistance toPhytophthora infestans andCladosporium cucumerinum in potato tuber tissue slices. Phytopathology70, 1074–1078

    Google Scholar 

  • Hewitt, E.J. (1952) Sand and water culture methods used in the study of plant nutrition. Commonwealth Agric. Bureaux, Bucks, UK. Bradley and Sons, Reading

    Google Scholar 

  • Hirai, N., Okamoto, M., Koshimizu, K. (1985) 1′,4′-trans-diol-ABA, a potent precursor of ABA inBotrytis cinerea. In: 12th Int Conference on Plant Growth Substances, p. 30, Bopp, M., Knoop, B., Rademacher, W., eds. Universität Heidelberg, Germany

    Google Scholar 

  • Hirai, K., Okamoto, M., Koshimizu, K. (1986) The 1′,4′-trans-diol of abscisic acid, a possible precursor of abscisic acid inBotrytis cinerea. Phytochemistry25, 1865–1868.

    Google Scholar 

  • Kern, M. (1985) Phytohormongehalte und Assimilattransport in Sommergerstesorten mit unterschiedlicher Resistenz gegenüber dem Echten Mehltau (Erysiphe graminis f. sp.hordei), Ph.D.thesis, Göttingen, Germany

    Google Scholar 

  • Kettner, J. (1991) Untersuchungen zur Biosynthese von Abscisinsäure bei der Interaktion des pflanzenpathogenen PilzesBotrytis cinerea Pers. mit der KulturtomateLycopersicon esculentum Mill. Ph.D. thesis, Hamburg, Germany

  • Milborrow, B.V. (1983) The reduction of (+/−)-[214C]abscisic acid to the 1′,4′-trans-diol by pea seedlings and the formation of 4'-desoxy ABA as an artefact. J. Exp. Bot.34, 303–308

    Google Scholar 

  • Mohanty, S.K., Anjaneyulu, A., Sridhr, R. (1979) Physiology of rice tungro virus disease: Involvement of abscisic acid-like substance in susceptible host-virus interactions. Physiol. Plant.45, 132–136.

    Google Scholar 

  • Naumann, R., Dörffling, K. (1982) Variations of free and conjugated abscisic acid, phaseic acid and dihydrophaseic acid levels in ripening barley grains. Plant Sci. Lett.27, 111–117

    Google Scholar 

  • Norman, S.M., Poling, S.M., Maier, V.P., Nelson, M.D. (1985) Ionylidene acetic acids and abscisic acid biosynthesis byCercospora rosicola. Agric. Biol. Chem.49, 2317–2324

    Google Scholar 

  • Norman, S.M., Bennett, R.D., Poling, S.M., Maier, V.P., Nelson, M.D. (1986) Paclobutrazol inhibits abscisic acid biosynthesis inCercospora rosicola. Plant Physiol.80, 122–125

    Google Scholar 

  • Okamoto, M., Hirai, N., Koshimizu, K. (1988a) Biosynthesis of abscisic acid. Mem. Coll. Agric., Kyoto Univ.132, 79–115

    Google Scholar 

  • Okamoto, M., Hirai, N., Koshimizu, K. (1988b) Biosynthesis of abscisic acid inCercospora pini-densiflorae. Phytochemistry27, 2099–2103

    Google Scholar 

  • Oritani, T., Ichimura, M., Yamashita, K. (1982) The metabolism of analogs of abscisic acid inCercospora cruenta. Agric. Biol. Chem.46, 1959–1960

    Google Scholar 

  • Parry, A.D., Horgan, R. (1990) Carotenoids and ABA Biosynthesis. News Bull. Br. Soc. Plant Growth Regul.11, 1–9

    Google Scholar 

  • Parry, A.D., Neill, S.J., Horgan, R. (1988) Xanthoxin levels and metabolism in the wild-type and wilty mutants of tomato. Planta173, 397–404

    Google Scholar 

  • Pegg, G.F. (1976) Natural growth regulators. In: Encyclopedia of plant physiology, vol. 4: Physiological plant pathology, pp. 560–616, Heitefuss, R., Williams, P.H., eds. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Schlenck, M., Gellermann, J.L. (1960) Esterification of fatty acids with diamethane on a small scale. Anal. Chem.32, 1412–1414

    Google Scholar 

  • Sindhu, R.K., Walton, D.C. (1988) Xanthoxin metabolism in cell-free preparations from wild type and wilty mutants of tomato. Plant Physiol.88, 178–182

    Google Scholar 

  • Sprecher, E. (1959) Über die Guttation bei Pilzen. Planta53, 565–574

    Google Scholar 

  • Steadman, J.R., Sequeira, L. (1970) Abscisic acid in tobacco plants.Tentative identification and its relation to stunting induced byPseudomonas solanacearum. Plant Physiol.45, 691–697

    Google Scholar 

  • Tuomi, T., Ilvesoksa, J., Laakso, S., Rosenquist, H. (1993) Interaction of abscisic acid and indole-3-acetic acid-producing fungi withSalix leaves. J. Plant Growth Regul.12, 149–156.

    Google Scholar 

  • Vaughan, G.T., Milborrow, B.V. (1984) The resolution by HPLC of RS-[2–14C]-Me-1′,4′-cis-diol of abscisic acid and the metabolism of (−)-R- and (+)-S-abscisic acid. J. Exp. Bot.35, 110–120

    Google Scholar 

  • Vaughan, G.T., Milborrow, B.V. (1988) The stability of the 1′,4′-diols of abscisic acid. Phytochemistry27, 339–343

    Google Scholar 

  • Ward, E.W.B., Cahill, D.M., Bhattacharyga, M.K. (1989) Abscisic acid suppression of phenylalanine ammonia-lyase activity and mRNA, and resistance of soybeans toPhytophthora megaspermaf. sp.glycinea. Plant Physiol.91, 23–27

    Google Scholar 

  • Whenham, R.J., Fraser, R.S.S. (1981) Effect of systemic and local-lesion-forming strains of tobacco mosaic virus on abscisic acid concentration in tobacco leaves: consequences for the control of leaf growth. Physiol. Plant Pathol.18, 267–278

    Google Scholar 

  • Whenham, R.J., Fraser, R.S.S., Snow, A. (1985) Tobacco mosaic virus induced increase in abscisic acid concentration in tobacco leaves: intracellular location and relationship to symptom severity and to extent of virus multiplication. Physiol. Plant Pathol.26, 379–387

    Google Scholar 

  • Whenham, R.J., Fraser, R.S.S., Brown, L.P., Payne, J.A. (1986) Tobacco mosaic virus-induced increase in abscisic acid concentration in tobacco leaves: Intracellular location in light and darkgreen areas, and relationship to symptom development. Planta168, 592–598

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank Dr. Clive Cain (Glaxo GmbH, Hamburg, Germany) for his careful review of the manuscript, Dr. Irene Urbasch and Prof. Dr. Ewald Sprecher (University of Hamburg, Germany) for helpful suggestions and for providing the strains of Botrytis cinerea. This work was supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kettner, J., Dörffling, K. Biosynthesis and metabolism of abscisic acid in tomato leaves infected withBotrytis cinerea . Planta 196, 627–634 (1995). https://doi.org/10.1007/BF01106753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106753

Key words

Navigation