Skip to main content
Log in

SrTiO3 glass ceramics

Part II Dielectric properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric properties of the strontium titanate aluminosilicate glass-ceramics described in the previous paper have been investigated over the frequency range of 10 to 1000 kHz and temperature range of −170 to 200° C. The dielectric properties were strongly dependent on the crystallization conditions, which determined the amounts of SrTiO3 and secondary crystalline phases, and the microstructure of the glass-ceramics. Room temperature values of the dielectric constant and temperature coefficient varied from 13.5 and +125 p.p.m. ° C−1 in uncrystallized glass to 47 and −600 p.p.m. ° C−1, respectively, in glass-ceramics crystallized for 16 h at 1100° C.

Relatively low dielectric losses (tanδ=0.002 at 1 MHz) were observed in uncrystallized glass, and the dielectric losses increased with both frequency and temperature. The dielectric loss at temperatures below −50° C increased upon crystallization of SrTiO3, while the dielectric loss at ambient temperatures (and above) decreased significantly with the crystallization of hexacelsian SrAl2Si2O3. The crystallization of titania in glass-ceramics with high crystallization temperatures resulted in large low frequency, high temperature losses, due to Maxwell-Wagner-Sillars effects. In most glass and glass-ceramic samples, a temperature-independent increase of dielectric loss was observed over the frequency range of 10 to 1000 kHz from −50 to 200° C; the cause of these increased losses was not determined.

Maxima in both the dielectric constant and loss appeared at low temperatures (below −100° C), and their magnitudes increased, as the crystallization temperature or time was increased. In the early stages of crystallization, the dielectric constant maxima could be explained on the basis of dielectric mixing between perovskite SrTiO3 and the glassy matrix. However, with higher crystallization temperatures, peaks in the dielectric constant and loss were the result of ferroic effects within the SrTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Swartz, E. Breval, C. Randall andB. H. Fox,J. Mater. Sci. this issue.

  2. A. Herczog,J. Amer. Ceram. Soc. 47 (1964) 107–115.

    Google Scholar 

  3. T. Kokubo, S. Sakka andM. Tashiro,J. Ceram. Ass. Jpn 74 (1966) 128–133.

    Google Scholar 

  4. T. Kokubo, C. Kung andM. Tashiro,ibid. 76 (1968) 89–93.

    Google Scholar 

  5. D. Hulsenberg andJ. Lehmann,Silakattechnik 34 (1983) 74–76.

    Google Scholar 

  6. F. W. Martin,Phys. Chem. Glasses 6 (1965) 143–146.

    Google Scholar 

  7. C. K. Russell andC. G. Bergeron,J. Amer. Ceram. Soc. 48 (1965) 162–163.

    Google Scholar 

  8. D. G. Grossman andJ. O. Isard J. Mater. Sci. 4 (1969) 1059–1063.

    Google Scholar 

  9. Idem, J. Amer. Ceram. Soc. 52 (1969) 230–231.

    Google Scholar 

  10. Idem, J. Phys. D 3 (1970) 1058–1067.

    Google Scholar 

  11. T. Kokubo, H. Nagao andM. Tashiro,J. Ceram. Ass. Jpn 77 (1969) 293–300.

    Google Scholar 

  12. T. Kokubo andM. Tashiro,J. Non-Cryst. Solids 13 (1973/1974) 328–340.

    Google Scholar 

  13. M. A. G. C. Van De Graaf, J. C. Lodder andA. J. Burgraaf,Glass Techn. 15 (1974) 143–147.

    Google Scholar 

  14. S. M. Lynch andJ. E. Shelby,J. Amer. Ceram. Soc. 67 (1984) 424–427.

    Google Scholar 

  15. N. F. Borelli, A. Herczog andR. D. Maurer,Appl. Phys. Lett. 7 (1965) 117–118.

    Google Scholar 

  16. N. F. Borelli,J. Appl. Phys. 38 (1967) 4243–4247.

    Google Scholar 

  17. F. Borelli andM. M. Layton,J. Non-Cryst. Solids 6 (1971) 197–212.

    Google Scholar 

  18. M. M. Layton andA. Herczog,J. Amer. Ceram. Soc. 50 (1967) 369–375.

    Google Scholar 

  19. Idem, Glass Techn. 10 (1969) 50–53.

    Google Scholar 

  20. W. N. Lawless,Rev. Sci. Instrum. 42 (1972) 561–566.

    Google Scholar 

  21. Idem, Adv. Cryogenic Eng. 16 (1971) 261–267.

    Google Scholar 

  22. Idem, US Patent 3649891 (1972).

  23. Idem, Ferroelectrics 3 (1972) 287–293.

    Google Scholar 

  24. Idem, ibid. 7 (1974) 379–381.

    Google Scholar 

  25. M. Monneraye, J. Sinderat andC. Jouwersma,Glass Tech. 9 (1968) 70–77.

    Google Scholar 

  26. S. L. Swartz, M. T. Lanagan, W. A. Schulze, L. E. Cross andW. N. Lawless,Ferroelectrics 50 (1983) 313–318.

    Google Scholar 

  27. S. L. Swartz, PhD Thesis, The Pennsylvania State University, (1985).

  28. S. L. Swartz, A. S. Bhalla, L. E. Cross andW. N. Lawless,J. Appl. Phys. 60 (1986) 2069–2080.

    Google Scholar 

  29. R. W. Sillars,J. Inst. Elec. Eng. 80 (1937) 378–394.

    Google Scholar 

  30. W. Niesel,Ann. Physik 6 (1952) 336–348.

    Google Scholar 

  31. S. L. Swartz andM. T. Lanagan, unpublished data.

  32. Sakudo andUnoki,Phys. Rev. Lett. 26 (1971) 851–853, 1147.

    Google Scholar 

  33. A. E. Owen,Phys. Chem. Glasses 2 (1961) 152–162.

    Google Scholar 

  34. E. Gough, J. O. Isard andJ. A. Topping,ibid. 10 (1969) 89–100.

    Google Scholar 

  35. R. S. Prasad andJ. O. Isard,ibid. 8 (1967) 218–223.

    Google Scholar 

  36. V. Halpern,Physica 79B (1975) 323–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartz, S.L., Bhalla, A.S., Cross, L.E. et al. SrTiO3 glass ceramics. J Mater Sci 23, 4004–4012 (1988). https://doi.org/10.1007/BF01106828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106828

Keywords

Navigation