Skip to main content
Log in

Energy-adjustedab initio pseudopotentials for the second and third row transition elements

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Nonrelativistic and quasirelativisticab initio pseudopotentials substituting the M(Z−28)+-core orbitals of the second row transition elements and the M(Z−60)+-core orbitals of the third row transition elements, respectively, and optimized (8s7p6d)/[6s5p3d]-GTO valence basis sets for use in molecular calculations have been generated. Additionally, corresponding spin-orbit operators have also been derived. Atomic excitation and ionization energies from numerical HF as well as from SCF pseudopotential calculations using the derived basis sets differ in most cases by less than 0.1 eV from corresponding numerical all-electron results. Spin-orbit splittings for lowlying states are in reasonable agreement with corresponding all-electron Dirac-Fock (DF) results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weeks JD, Hazi A, Rice SA (1969) Adv Chem Phys 16:283

    Google Scholar 

  2. Bardsley JN (1974) Case Stud At Phys 4:299

    Google Scholar 

  3. Dixon RN, Robertson IL (1978) Theoretical chemistry (specialist periodical reports), vol 3. The Chemical Society, London, pp 100–134

    Google Scholar 

  4. Krauss M, Stevens WJ (1984) Annu Rev Phys Chem 35:357

    Google Scholar 

  5. Christiansen PA, Ermler WC, Pitzer KS (1985) Annu Rev Phys Chem 36:407

    Google Scholar 

  6. Wedig U, Dolg M, Stoll H, Preuss H (1986) Energy-adjusted pseudopotentials for transition-metal elements. In: Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO ASI Series C, vol 176. Reidel, Dordrecht, pp 79–89

    Google Scholar 

  7. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:2123

    Google Scholar 

  8. Hay PJ, Wadt WR (1985) J Chem Phys 82:270, 299

    Google Scholar 

  9. Hurley MM, Pacios LF, Christiansen PA, Ross RB, Ermler WC (1986) J Chem Phys 84:6840

    Google Scholar 

  10. Dolg M. Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866

    Google Scholar 

  11. LaJohn LA, Christiansen PA, Ross RB, Atashroo T, Ermler WC (1987) J Chem Phys 87:2812

    Google Scholar 

  12. Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1987) J Comput Chem 8:226, 256

    Google Scholar 

  13. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173

    Google Scholar 

  14. Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730

    Google Scholar 

  15. Schwerdtfeger P, Dolg M, Schwarz WHE, Bowmaker GA, Boyd PWD (1989) J Chem Phys 91:1762

    Google Scholar 

  16. Froese Fischer C: Program MCHF77 (1978) Comput Phys Commun 14:145

    Google Scholar 

  17. Dolg M (1987) Modified version of the program MCHF77 [16]

  18. Wood JH, Boring AM (1978) Phys Rev B18:2701

    Google Scholar 

  19. Cowan RD, Griffin DC (1976) J Opt Soc Am 66:1010

    Google Scholar 

  20. Martin RL, Hay PJ (1981) J Chem Phys 75:4539

    Google Scholar 

  21. Pitzer RM, Winter NW (1988) J Phys Chem 92:3061

    Google Scholar 

  22. Grant IP, McKenzie BJ, Norrington PH, Mayers DF, Pyper NC: Program MCDF (1980) Comput Phys Commun 21:207

    Google Scholar 

  23. Barthelat JC, Durand Ph: Program PSATOM (1981) Université Paul Sabatier, Toulouse, France

  24. Moore CE (1952, 1958) Atomic energy levels, vol II (Cr-Nb), vol III (Mo-La, Hf-Ac). Circular of the National Bureau of Standards 467, US Department of Commerce

  25. Van Montfort JT, Van Piggelen HU, Aissing G, Nieuwpoort WC: Program LSTERMS (1983) Rijksuniversiteit te Groningen, Netherlands

  26. Dolg M, Schwerdtfeger P (1988) Modified version of the program MCDF [22]

  27. Hafner P, Schwarz WHE (1979) Chem Phys Lett 65:537

    Google Scholar 

  28. Pelissier M, Daudey JP, Malrieu JP, Jeung GH (1986) The electronic structure of transition metal atoms and diatoms through pseudopotential approaches. In: Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO ASI Series C, vol 176. Reidel, Dordrecht, pp 37–51

    Google Scholar 

  29. Hyla-Kryspin I, Demuynck J, Strich A, Benard M (1981) J Chem Phys 75:3954

    Google Scholar 

  30. Chang AHH, Pitzer RM (1989) J Am Chem Soc 111:2500

    Google Scholar 

  31. Fraga S, Saxena KMS, Karwowski J (1976) Handbook of atomic data. Physical Sciences Data, vol 5. Elsevier, Amsterdam Oxford New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrae, D., Häußermann, U., Dolg, M. et al. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoret. Chim. Acta 77, 123–141 (1990). https://doi.org/10.1007/BF01114537

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114537

Key words

Navigation