Skip to main content
Log in

Conformal invariance and torsion in general relativity

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study a theory for gravity in which the linear connections are assumed to be arbitrary, except that they are restricted to satisfy the metric condition ∇μ g λν=0. A scalar field is added to the theory, and a conformally invariant action integral, linear in the curvature tensor, is defined. The linear connections emerging from the variational principle contain torsion that is related to a propagating spin-1 vector field, identified as the electromagnetic gauge potential. We obtain a set of conformally invariant equations for the metric field, and conclude that Einstein's equations arise from a particular choice of gauge. Finally, spin-1/2 fields are introduced by means of the vierbein formalism, and the qualitative features of the theory are maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H. (1952)Space-Time-Matter (Dover, New York).

    Google Scholar 

  2. Unruh, W. G. (1984). InQuantum Theory of Gravity, S. M. Christensen, ed. (Adam Hilger Ltd., Bristol).

    Google Scholar 

  3. Duff, M. J. (1981). InQuantum Gravity 2, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford), p. 81.

    Google Scholar 

  4. Weinberg, S. (1979). InAn Einstein Centenary Survey, S. Hawking and W. Israel, eds (Cambridge University Press, Cambridge).

    Google Scholar 

  5. Kaku, K. (1983).Phys. Rev.,D27 2809 and references therein.

    Google Scholar 

  6. Zee, A. (1979).Phys. Rev. Lett.,42, 417;Phys. Rev. Lett.,44, 703.

    Google Scholar 

  7. Smolin, L. (1979).Nucl. Phys. B160, 253.

    Google Scholar 

  8. Fronsdal, C. (1984).Phys. Rev.,D30, 2081.

    Google Scholar 

  9. Binegar, B., Fronsdal, C. and Heidenreich, W. (1983).Phys. Rev.,D27, 2249.

    Google Scholar 

  10. Stelle, K. S. (1977).Phys. Rev.,D16, 953.

    Google Scholar 

  11. Dirac P. A. M. (1973).Proc. R. Soc. London,A333, 403.

    Google Scholar 

  12. Brans, C. and Dicke, R. H. (1961).Phys. Rev.,124, 925.

    Google Scholar 

  13. Einstein, A. (1953).The Meaning of Relativity (Princeton University, Princeton, New Jersey).

    Google Scholar 

  14. Ponomariov, V. N. and Obuchov, JU. (1982).Gen. Rel. Grav.,14, 309.

    Google Scholar 

  15. Utiyama, R. (1975).Prog. Theor. Phys.,53, 565.

    Google Scholar 

  16. Sezgin, E. and van Nieuwenhuizen, P. (1980).Phys. Rev.,D21, 3269.

    Google Scholar 

  17. Weyl, H. (1929).Z. Phys.,56, 330.

    Google Scholar 

  18. Schwinger, J. (1963).Phys. Rev.,130, 800 and 1253.

    Google Scholar 

  19. Veltman, M. (1981). InMethods in Field Theory, R. Bailin and J. Zinn-Justin, eds (North Holland/World Scientific, Singapore).

    Google Scholar 

  20. Coote, N. C. T. and McFarlane, A. J. (1978).Gen. Rel. Grav.,9, 621.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maluf, J.W. Conformal invariance and torsion in general relativity. Gen Relat Gravit 19, 57–71 (1987). https://doi.org/10.1007/BF01119811

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01119811

Keywords

Navigation