Skip to main content
Log in

Heat capacity and glass transition of ethylene oxide clathrate hydrate

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

The heat capacity of structure I ethylene oxide clathrate hydrate EO-6.86 H2O was measured in the temperature range 6–300 K with an adiabatic calorimeter. The temperature and enthalpy of congruent melting were determined to be (284.11 ± 0.02) K and 48.26 kJ mol−1, respectively. A glass transition related to the proton configurational mode in the hydrogen-bonded host was observed around 90 K. This glass transition was similar to the one observed previously for the structure II tetrahydrofuran hydrate but showed a wider distribution of relaxation times. The anomalous heat capacity and activation enthalpy associated with the glass transition were almost the same as those for THF-hydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Bertie and S. M. Jacobs:Can. J. Chem. 55, 1777 (1977).

    Google Scholar 

  2. J. E. Bertie and S. M. Jacobs:J. Chem. Phys. 69, 4105 (1978).

    Google Scholar 

  3. D. D. Klug and E. Whalley:Can. J. Chem. 51, 4062 (1973).

    Google Scholar 

  4. G. P. Johari and H. A. M. Chew:Phil. Mag. B 49, 281 (1984).

    Google Scholar 

  5. A. W. Naumann and G. J. Safford:J. Chem Phys. 47, 867 (1967).

    Google Scholar 

  6. D. W. Davidson: inNatural Gas Hydrates: Properties, Occurrence and Recovery, Ed. J. L. Cox, Ch. 1, Butterworth, Boston (1983).

    Google Scholar 

  7. O. Haida, T. Matsuo, H. Suga, and S. Seki:J. Chem. Thermodyn. 6, 815 (1974).

    Google Scholar 

  8. O. Yamamuro, M. Oguni, T. Matsuo, and H. Suga:J Phys. Chem. Solids 48, 935 (1987).

    Google Scholar 

  9. Y. P. Handa, D. D. Klug, and E. Whalley:J. Phys. Colloq. C1 48, 435 (1987).

    Google Scholar 

  10. Y. Tajima, T. Matsuo, and H. Suga:Nature 299, 810 (1982).

    Google Scholar 

  11. Y. Tajima, T. Matsuo, and H. Suga:J. Phys. Chem. Solids 45, 1135 (1984).

    Google Scholar 

  12. O. Yamamuro, M. Oguni, T. Matsuo, and H. Suga:J Phys. Chem. Solids 49, 425 (1988).

    Google Scholar 

  13. O. Yamamuro, M. Oguni, T. Matsuo, and H. Suga:Solid State Commun. 62, 289 (1987).

    Google Scholar 

  14. O. Yamamuro, M. Oguni, T. Matsuo, and H. Suga:J. Incl. Phenom. 6, 307 (1988).

    Google Scholar 

  15. M. von Stackelberg and B. Meuthen:Z. Electrochem. 62, 130 (1958).

    Google Scholar 

  16. R. K. McMullan and G. A. Jeffrey:J. Chem. Phys. 42, 2725 (1965).

    Google Scholar 

  17. D. W. Davidson and G. J. Wilson:Can. J. Chem. 41, 1424 (1963).

    Google Scholar 

  18. S. K. Garg, B. Morris, and D. W. Davidson:J. Chem. Soc., Faraday Trans. 2 68, 481 (1972).

    Google Scholar 

  19. J. E. Bertie and D. A. Othen:Can. J. Chem. 50, 3443 (1972).

    Google Scholar 

  20. D. G. Leaist, J. J. Murray, M. L. Post, and D. W. Davidson:J. Phys. Chem. 86, 4175 (1982).

    Google Scholar 

  21. J. E. Callanan and E. D. Sloan:Int. Gas Res. Conf. 1012 (1983).

  22. O. Yamamuro, M. Oguni, T. Matsuo, and H. Suga:Bull. Chem. Soc. Jpn. 60, 1269 (1987).

    Google Scholar 

  23. O. Maass and E. H. Boomer:J. Am. Chem. Soc. 44, 1709 (1922).

    Google Scholar 

  24. D. N. Glew and N. S. Rath:J. Chem. Phys. 44, 1710 (1966).

    Google Scholar 

  25. K. E. MacCormack and J. H. B. Chenier:Ind. Eng. Chem. 47, 1454 (1955).

    Google Scholar 

  26. W. F. Giauque and J. Gordon:J. Am. Chem. Soc. 71, 2176 (1949).

    Google Scholar 

  27. D. N. Glew and M. L. Haggett:Can. J. Chem. 46, 3857 (1968).

    Google Scholar 

  28. H. Suga and S. Seki:J. Non-Cryst. Solids 16, 171 (1974).

    Google Scholar 

  29. R. Kohlrausch:Ann. Phys. (Leipzig) 12, 393 (1847).

    Google Scholar 

  30. G. Williams and D. C. Watts:Trans. Faraday Soc. 66, 80 (1970).

    Google Scholar 

  31. S. Brawer: inRelaxation in Viscous Liquids and Glasses, American Ceramic Society, Columbus, Ohio (1985).

    Google Scholar 

  32. T. Matsuo, I. Kishimoto, H. Suga, and F. Luty:Solid State Commun. 58, 177 (1986).

    Google Scholar 

  33. C. P. Lindsey and G. D. Patterson:J. Chem. Phys. 73, 3348 (1980).

    Google Scholar 

  34. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson:Phys. Rev. Lett. 53, 958 (1984).

    Google Scholar 

  35. K. L. Ngai, R. W. Rendell, A. K. Rajagopal, and S. Teitler:Ann. N. Y. Acad. Sci. 484, 150 (1986).

    Google Scholar 

  36. F. Hollander and G. A. Jeffrey:J. Chem. Phys. 66, 4699 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.

Author for correspondence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamuro, O., Handa, Y.P., Oguni, M. et al. Heat capacity and glass transition of ethylene oxide clathrate hydrate. J Incl Phenom Macrocycl Chem 8, 45–58 (1990). https://doi.org/10.1007/BF01131287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01131287

Key words

Navigation