Skip to main content
Log in

Relaxation process due to molecular inclusions in non-crystalline solids

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

The dielectric, thermodynamic and electric conduction behaviour of amorphous solids with three types of inclusions are described. In the first, or the self-inclusion in glasses, the features of dielectric relaxation due to localized rotational diffusion have a remarkable resemblance to those of the rotation of guest molecules in clathrate structures. But here, the availability of the various configurational states to molecules in the local regions makes a relatively greater contribution to the thermodynamic behaviour of a glass than is observed in clathrates. The number of such self-inclusions decreases as a glass spontaneously densifies on ageing. In this respect, the features attributable to such inclusions in a non-crystalline solid differ from those of a crystalline solid. In the second, - 20 A size inclusions or microdomains of strained a-AgI (bec lattice) are randomly distributed in AgI-AgP03 glasses. The electrical conductivity due to such inclusions follows a power law characteristic of site percolation with a percolation threshold of 0.3, critical exponent 3.3, vulnerability 4.8 and the number of contact sites 2.7. In the third, the part of the repeat unit of a randomly oriented poly(vinyl pyrrolidone) becomes incorporated as inclusions in the distorted, H-bonded, cage-like structures formed by the water molecules. The features of dielectric relaxation of water molecules in the solid aqueous solution of the polymer are similar to those of ice clathrates containing a guest molecule similar in size to pyrrolidone, but the respective temperature dependence of their rates differ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Davidson: inWater — A Comprehensive Treatise, Vol. 2, Chapter 3, Ed. F. Franks, Plenum, 1973, p. 115.

  2. G. P. Johari:Ann. N.Y. Acad. Sci. 279, 117 (1976).

    Google Scholar 

  3. S. R. Gough, S. K. Garg, and D. W. Davidson:Chem. Phys. 3, 239 (1974).

    Google Scholar 

  4. G. P. Johari:Phil. Mag. 46, 549 (1982).

    Google Scholar 

  5. G. P. Johari and M. Goldstein:J. Chem. Phys. 53, 2372 (1973).

    Google Scholar 

  6. G. P. Johari:J. Chim. Phys. (Fr.) 82, 282 (1985).

    Google Scholar 

  7. J. Perez, J.-Y. Cavaille, S. Etienne, F. Fouquet, and F. Guyot:Ann. Phys. (Fr.) 8, 417 (1983).

    Google Scholar 

  8. K. Pathmanathan and G. P. Johari:J. Phys. C18, 6535 (1985).

    Google Scholar 

  9. N. G. McCrum, B. E. Read, and G. Williams:Inelastic and Dielectric Effects in Polymeric Solids, Wiley, London, 1967.

    Google Scholar 

  10. G. P. Johari:Polymer 27, 866 (1986).

    Google Scholar 

  11. C. Mai, S. Etienne, J. Perez, and G. P. Johari:Phil. Mag. 50, 657 (1984).

    Google Scholar 

  12. G. P. Johari and C. P. Smyth:J. Chem. Phys. 56, 4411 (1972).

    Google Scholar 

  13. K. Pathmanathan and G. P. Johari:Polymer 29, 303 (1988).

    Google Scholar 

  14. R. Simha, J. M. Roe, and V. S. Nanda:J. Appl. Phys. 43, 4312 (1972).

    Google Scholar 

  15. M. Goldstein:Ann. N.Y. Acad. Sci. 279, 68 (1976);J. Chem. Phys. 64, 4767 (1976).

    Google Scholar 

  16. G. P. Johari:Ann. N.Y Acad. Sci. 279, 102 (1986);Phil. Mag. 41, 41 (1980).

    Google Scholar 

  17. G. P. Johari:Phil. Mag. 35, 1077 (1977).

    Google Scholar 

  18. H. Suga and S. Seki:Bull. Chem. Soc. Jpn 46, 3020 (1973).

    Google Scholar 

  19. G. P. Johari: InPlastic Deformation of Amorphous and Semicrystalline Materials, Les Houches Lectures 1982, Ed. B. Escaig and C. G'Sell, Les Editions du Physique, 1982, p. 109.

  20. A. Q. Tool:J. Am. Ceram. Soc. 29, 240 (1946).

    Google Scholar 

  21. T. Minami:J. Noncryst. Solids 73, 273 (1985).

    Google Scholar 

  22. J. P. Malugani and R. Mercier:Solid State Ionics 13, 293 (1984).

    Google Scholar 

  23. M. Tachez, R. Mercier, J. P. Malugani, and A. J. Dianoux:Solid State Ionics 20, 93 (1986).

    Google Scholar 

  24. A. Schiraldi, P. Baldini, and E. Pezzati:Phys. Chem. Glasses 26, 193 (1985).

    Google Scholar 

  25. L. M. Torell:Phys. Rev. B 31, 4103 (1985).

    Google Scholar 

  26. L. Borjesson, S. W. Martin, L. M. Torell, and C. A. Angell:Solid State Ionics 18/19, 141 (1986).

    Google Scholar 

  27. M. Mangion and G. P. Johari:Phys. Rev. B.36, 8845 (1987);Phys. Chem. Glasses 92, 225 (1988).

    Google Scholar 

  28. R. Kohlrausch:Ann. Phys. (Leipzig) 12, 393 (1887).

    Google Scholar 

  29. G. Williams and D. C. Watts:Trans. Faraday Soc. 66, 80 (1970).

    Google Scholar 

  30. C. P. Lindsey and G. D. Patterson:J. Chem. Phys. 73, 3348 (1980).

    Google Scholar 

  31. P. B. Macedo, C. T. Moynihan, and R. Bose:J. Chem. Phys. 13, 171 (1972).

    Google Scholar 

  32. J. Wong. and C. A. Angell:Glass Structure by Spectroscopy, Marcel Dekker, 1976, Chapter II.

  33. A. Fontana, G. Mariotto, E. Cazzanelli, G. Carini, M. Cutroni, and M. Frederico:Phys. Rev. Lett. 43, 209 (1983).

    Google Scholar 

  34. G. Dalba, A. Fontana, P. Fomasini, G. Mariotto, M. R. Masullo, and F. Rocca:Solid State Ionics 9/10, 597 (1983).

    Google Scholar 

  35. S. Kirkpatrick:Rev. Mod. Phys. 45, 574 (1973).

    Google Scholar 

  36. R. Zallen: InPercolation Structures and Processes, Ed. G. Deutscher, R. Zallen and J. Adler, Adam Hilgar, Bristol, 1983, p. 3.

    Google Scholar 

  37. J. P. Malugani, A. Wasniewski, M. Doreau, G. Robert, and A. Al Rikabi:Mat. Sci. Bull. 13, 427 (1978).

    Google Scholar 

  38. H. Ottavi, J. Clerc, G. Giraud, J. Roussenq, E. Guyon, and C. D. Mitescu:J. Phys. C11, 1311 (1978).

    Google Scholar 

  39. H. Scher and R. Zallen:J. Chem. Phys. 53, 3759 (1970).

    Google Scholar 

  40. G. Deutscher and M. L. Rappoport:J. de Phys. Lett. (Fr.) 40, L219 (1979).

    Google Scholar 

  41. S. K. Jain and G. P. Johari:J. Phys. Chem. 92, 5851 (1988).

    Google Scholar 

  42. B. Morris and D. W. Davidson:Can. J. Chem. 49, 1243 (1971).

    Google Scholar 

  43. R. E. Hawkins and D. W. Davidson:J. Phys. Chem. 70, 1889 (1966).

    Google Scholar 

  44. D. Feil and G. A. Jeffrey:J. Chem. Phys. 35, 1863 (1961).

    Google Scholar 

  45. D. Eisenberg and W. Kauzman:The Structure and Properties of Water, Oxford, 1969.

  46. G. P. Johari and E. Whalley: inPhysics and Chemistry of Ice, Ed. E. Whalley, S. J. Jones and L. W. Gold, Roy. Soc. of Canada, 1973, p. 278.

  47. G. P. Johari, A. Lavergne, and E. Whalley:J. Chem. Phys. 61, 4292. (1974).

    Google Scholar 

  48. G. P. Johari and E. Whalley:J. Chem. Phys. 64, 4486 (1976);J. Chem. Phys. 75, 1333 (1981).

    Google Scholar 

  49. G. P. Johari and S. J. Jones:Proc. Roy. Soc. (London) 349, 467 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johari, G.P. Relaxation process due to molecular inclusions in non-crystalline solids. J Incl Phenom Macrocycl Chem 8, 255–272 (1990). https://doi.org/10.1007/BF01131302

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01131302

Key words

Navigation