Skip to main content
Log in

Reappraisal of the quarter-point quadrilateral element in linear elastic fracture mechanics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The eight noded quarter-point Serendipity quadrilateral isoparametric element is reexamined. The stresses are proven to be square-root singular on all rays in a small region adjacent to the crack tip and, as was previously shown, along the element sides. It is demonstrated that the element strain energy, and hence its stiffness, is bounded. The effect of element size in characterizing the square-root singular behavior is investigated through stress intensity factor calculations in the case of two geometries with crack tip elements of various dimensions. Workers in the field of fracture mechanics may now, without hesitation, employ this element for modeling crack tip singularities in linear elastic material.

Résumé

On réexamine la validité d'un élément quadrilatère isoparamétrique à huit noeuds quart-point de Serendipity. On prouve que les contraintes présentent une singularité du deuxième ordre sur tous les rayons situés dans une petite région adjacente à l'extrémité de la fissure et, comme on l'a montré précédemment, le long des bords de l'élément. On démontre que l'énergie de déformation de l'élément, et donc sa rigidité, est limitée. On étudie l'effet de la taille de l'élément sur la caractérisation de la singularité du deuxième ordre, en calculant le facteur d'intensité d'entaille dans le cas de deux géométries présentant des éléments de dimensions différentes à l'extrémité d'une fissure. Les spécialistes en mécanique de la rupture peuvent à présent, sans hésitation, utiliser cet élément pour modéliser les singularités qui se présentent à l'extrémité d'une fissure dans un matériau linéaire et élastique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Whiteman and J.E. Akin, inThe Mathematics of Finite Elements and Applications III, ed. J.R. Whiteman, Academic Press, London (1978) 35–54.

    Google Scholar 

  2. R.S. Barsoum,International Journal of Fracture 10 (1974) RCR 603–605.

    Google Scholar 

  3. R.D. Henshell and K.G. Shaw,International Journal for Numerical Methods in Engineering 9 (1975) 495–507.

    Google Scholar 

  4. J.M. Bloom,International Journal of Fracture 11 (1975) RCR 705–707.

    Google Scholar 

  5. R.S. Barsoum,International Journal for Numerical Methods in Engineering 10 (1976) 25–37.

    Google Scholar 

  6. C.F. Shih, H.G. deLorenzi and M.D. German,International Journal of Fracture 12 (1976) RCR 647–651.

    Google Scholar 

  7. R.S. Barsoum,International Journal for Numerical Methods in Engineering 11 (1977) 85–98.

    Google Scholar 

  8. H.D. Hibbitt,International Journal for Numerical Methods in Engineering 11 (1977) 180–184.

    Google Scholar 

  9. T.K. Hellen,International Journal for Numerical Methods in Engineering 11 (1977) 200–203.

    Google Scholar 

  10. P.P. Lynn and A.R. Ingraffea,International Journal for Numerical Methods in Engineering 12 (1978) 1031–1036.

    Google Scholar 

  11. Y. Yamada, Y. Ezawa, I. Nishiguchi and M. Okabe,International Journal for Numerical Methods in Engineering 14 (1979) 1525–1544.

    Google Scholar 

  12. L. Ying,International Journal for Numerical Methods in Engineering 18 (1982) 31–39.

    Google Scholar 

  13. R.S. Barsoum,International Journal for Numerical Methods in Engineering 18 (1982) 1420–1422.

    Google Scholar 

  14. L. Ying, Author's Reply, ibid. (1982) 1422–1423.

    Google Scholar 

  15. L.P. Harrop, inNumerical Methods in Fracture Mechanics, ed. A.R. Luxmoore and D.R.J. Owen, Swansea, (1978) 302–314.

  16. S.L. Pu, M.A. Hussain and W.E. Lorensen,International Journal for Numerical Methods in Engineering 12 (1978) 1727–1742.

    Google Scholar 

  17. A.R. Ingraffea and C. Manu,International Journal for Numerical Methods in Engineering 15 (1980) 1427–1445.

    Google Scholar 

  18. M.A. Hussain, J.D. Vasilakis and S.L. Pu,International Journal for Numerical Methods in Engineering 17 (1981) 1397–1406.

    Google Scholar 

  19. A. Peano and A. Pasini,International Journal for Numerical Methods in Engineering 18 (1982) 314–320.

    Google Scholar 

  20. R.S. Alwar and K.N. Ramachandran Nambissan,International Journal for Numerical Methods in Engineering 19 (1983) 293–303.

    Google Scholar 

  21. A.S. Kuo, S. Saul and M. Levy,Engineering Fracture Mechanics 17 (1983) 281–288.

    Google Scholar 

  22. S. Borofsky,Elementary Theory of Equations, The MacMillan Company, New York (1960) 114–131.

    Google Scholar 

  23. R.H. Gallagher, inNumerical Methods in Fracture Mechanics, ed. A.R. Luxmoore and D.R.J. Owen, Swansea (1978) 1–25.

  24. C.W. Woo and M.D. Kuruppu,International Journal of Fracture 20 (1982) 163–178.

    Google Scholar 

  25. M. Isida,International Journal of Fracture 7 (1971) 301–316.

    Google Scholar 

  26. L. Banks-Sills, M. Arcan and Y. Bortman,Engineering Fracture Mechanics (in press).

  27. “Plane-Strain Fracture Toughness of Metallic Materials”, E399-81,Annual Book of ASTM Standards, Part 10 (1981) 588–615.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banks-Sills, L., Bortman, Y. Reappraisal of the quarter-point quadrilateral element in linear elastic fracture mechanics. Int J Fract 25, 169–180 (1984). https://doi.org/10.1007/BF01140835

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01140835

Keywords

Navigation