Skip to main content
Log in

Ultrastructural features of six types of neurons in rat dorsal root ganglia

  • Published:
Journal of Neurocytology

Summary

Sections of glutaraldehyde-fixed lumbar dorsal root ganglia of the rat were examined in the electron microscope following impregnation with the uranyl-lead-copper technique or postfixation in potassium ferrocyanide-reduced osmium. Three types of ganglion cells (A, B, C) were identified on the basis of their size and the distribution of their organelles. They were further subdivided into six subtypes according to the arrangement and three-dimensional organization of the Nissl bodies and Golgi apparatus in the perikarya. Type A1 cells were large, clear neurons in which Nissl bodies, separated from each other by pale narrow strands of cytoplasm containing small stacks of Golgi saccules and rod-like mitochondria, were evenly distributed throughout the perikaryon. In type A2, the Nissl bodies assumed a similar distribution but were separated by much wider strands of cytoplasm. Type A3, the smallest of the type A category, displayed densely packed Nissl bodies and long stacks of Golgi saccules which formed a perinuclear ring in the mid-portion of the perikaryon.

Type B cells were smaller and showed a concentric zonation of their organelles. In type B1, large Nissl bodies located in an outer cytoplasmic zone were made of long piles of parallel cisternae interrupted by curved Golgi stacks. Type B2 was characterized by a ring-like Golgi apparatus separating the perikaryon in a cortical zone composed mainly of Nissl substance and a juxtanuclear zone containing mitochondria and smooth endoplasmic reticulum. Type C cells were the smallest of the ganglion cells and contained small, poorly demarcated Nissl bodies and a juxtanuclear Golgi apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, K. H. (1961) Untersuchungen über den Feinbau von Spinalganglien.Zeitschrift für Zellforschung und mikroskopische Anatomie 55, 1–48.

    Google Scholar 

  • Boutry, J. M. &Novikoff, A. B. (1975) Cytochemical studies on Golgi apparatus, GERL and lysosomes in neurons of dorsal root ganglia in mice.Proceedings of the National Academy of Sciences USA 72, 502–12.

    Google Scholar 

  • Cauna, N. &Naik, N. T. (1963) The distribution of cholinesterases in the sensory ganglia of man and some mammals.Journal of Histochemistry and Cytochemistry 11, 129–38.

    Google Scholar 

  • Cervos-Navarro, J. (1959) Elektronenmikroskopische Untersuchungen an Spinalganglien und Nervenzellen.Archiv für Psychiatrie und Nervenkrankheiten 199, 643–62.

    Google Scholar 

  • Chan-Palay, V. &Palay, S. L. Ultrastructural identification of substance P cells and their processes in rat sensory ganglia and their terminals in the spinal cord by immunocytochemistry.Proceedings of the National Academy of Sciences USA 74, 4050–4.

  • Clark, S. L. (1926) Nissl granules of primary afferent neurons,Journal of Comparative Neurology 41, 423–51.

    Google Scholar 

  • Cuenod, M., Bagnoli, P., Beaudet, A., Rustioni, A., Wiklund, L. &Streit, P. (1982) Transmitter specific retrograde labeling of neurons. InCytochemical Methods in Neuroanatomy (edited byPalay, S. L. andChan-Palay, V.), pp. 17–44. New York: Alan R. Liss.

    Google Scholar 

  • Dawson, I. M., Hossack, J. &Wyburn, G. M. (1955) Observations on the Nissl's substance, cytoplasmic filaments and the nuclear membrane of spinal ganglion cells.Proceedings of the Royal Society of London B 166, 132–42.

    Google Scholar 

  • Dogiel, A. S. (1908) Der Bau der Spinalganglien des Menschen und der Säugetiere, p. 157. Jena: Gustav Fisher.

    Google Scholar 

  • Droz, B. (1967a) Synthèse et transfert des protéines cellulaires dans les neurones ganglionnaires. Etude radioautographique quantitative en microscopie électronique.Journal de Microscopie 6, 201–8.

    Google Scholar 

  • Droz, B. (1967b) L'appareil de Golgi comme site d'incorporation du galactose-3H dans les neurones ganglionnaires spinaux chez le rat.Journal de Microscopie 6, 419–24.

    Google Scholar 

  • Duce, I. R. &Keen, P. (1977) An ultrastructural classification of the neuronal cell bodies of the rat dorsal root ganglion using zinc iodide-osmium impregnation.Cell and Tissue Research 185, 263–77.

    Google Scholar 

  • Hirt, A. (1928) Über den Aufbau des Spinalgangliens and seine Beziehungen zum Sympathicus.Zeitschrift für Anatomie und Entwicklungsgeschichte 87, 275–318.

    Google Scholar 

  • Hökfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G. &Arimura, A. (1976) Immunochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat.Neuroscience 1, 131–6.

    Google Scholar 

  • Jacobs, J. M. (1976) quoted by Lieberman (1976).

    Google Scholar 

  • Jacobs, J. M., Carmichael, N. &Cavanagh, J. B. (1975) Ultrastructural changes in the dorsal root and trigerminal ganglia of rats poisoned with methyl mercury.Neuropathology and Applied Neurology 1, 1–19.

    Google Scholar 

  • Kalina, M. &Bubis, J. J. (1968) Histochemical studies on the distribution of acid phosphatases in neurons of sensory ganglia.Histochemie 14, 103–12.

    Google Scholar 

  • Kalina, M. &Wolman, M. (1970) Correlative histochemical and morphological study on the maturation of sensory ganglion cells in the rat.Histochemie 22, 100–8.

    Google Scholar 

  • Karnovsky, M. J. (1971) Use of ferrocyanide reduced osmium tetroxide in electron microscopy.Proceedings of the 11th American Society for Cell Biology Meeting, New Orleans, Louisiana, p. 146. The Society: Chicago.

    Google Scholar 

  • Knyihar, E. (1971) Fluoride resistant and phosphatase system of nociceptive dorsal root afferents.Experientia 27, 1205–7.

    Google Scholar 

  • Körner, F. (1937) Variationstatistische Untersuchungen über die Grösse der Kerne und der Kernkörperschen menschlicher Nervenzellen.Zeitschrift für Mikroskopische-Anatomie Forschung 42, 81–115.

    Google Scholar 

  • Lawson, S. N. (1979) The postnatal development of large light and small dark neurons in mouse dorsal root ganglia: a statistical analysis of cell numbers and size.Journal of Neurocytology 8, 275–94.

    Google Scholar 

  • Lawson, S. N., Caddy, K. W. T. &Biscoe, T. J. (1974) Development of rat dorsal root ganglion neurons. Studies of cell birthdays and changes in mean cell diameter.Cell and Tissue Research 153, 399–413.

    Google Scholar 

  • Lieberman, A. R. (1976) Sensory ganglia. InThe Peripheral Nerve (edited byLandon, D. N.), pp. 188–278. London: Chapman and Hall.

    Google Scholar 

  • Lundberg, J. M., Hökfelt, T., Nilsson, G., Terenius, L., Rehfeld, J., Elde, R. &Said, S. (1978) Peptide neurons in the vagus, splanchnic and sciatic nerves.Acta Physiologica Scandinavica 104, 499–501.

    Google Scholar 

  • Lundberg, J. M., Hökfelt, T., Änggård, A., Uvnäs-Wallensten, K., Brimijoin, S., Brodin, E. &Fahrenkrug, J. (1980) Peripheral peptide neurons: distribution, axonal transport, and some aspects on possible function. InNeural Peptides and Neuronal Communication (edited byCosta, E. andTrabucchi, M.), pp. 25–36. New York: Raven Press.

    Google Scholar 

  • Nagy, J. I. &Hunt, S. p. (1982) Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganglia are separate from those containing substance P or somatostatin.Neuroscience 7, 89–97.

    Google Scholar 

  • Novikoff, A. B. (1967) Enzyme localization and ultrastructure of neurons. InThe Neuron (edited byHydén, H.), pp. 255–318. Amsterdam, London, New York: Elsevier Publishing Company.

    Google Scholar 

  • Novikoff, P. M., Novikoff, A. B., Quintana, N. &Hauw, J. J. (1971) Golgi apparatus, Gerl and lysosomes of neurons in rat dorsal root ganglia studied by thick section and thin section cytochemistry.Journal of Cell Biology 50, 859–86.

    Google Scholar 

  • Rustioni, A. &Cuenod, M. (1981) Selective retrograde labelling of central and spinal ganglion neurons after injections of D-aspartate and GABA in the spinal cord and cuneate nucleus of rats.Neuroscience Abstracts 7, 322.

    Google Scholar 

  • Sarrat, R. (1970) Zur Chemodifferenzierung des Rückenmarks und der Spinalganglien der Ratte.Histochemie 24, 202–13.

    Google Scholar 

  • Scharf, J. H. (1958) Sensible ganglien. InHandbuch der mikroskopischen Anatomie des Menschen, zweiter band, dritter teil (edited byVon Mollendorf, W. andBargmann, W.). Berlin, Gottingen, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Spater, H. W., Novikoff, A. B., Spater, S. H. &Quintana, N. (1978) Pyridoxal phosphatase: cytochemical localization in GERL and other organelles of rat neurons.Journal of Histochemistry and Cytochemistry 26, 809–21.

    Google Scholar 

  • Spater, H. W., Schnitzer, J. A., Quintana, N., Spater, S. H. &Novikoff, A. B. (1981) Neuronal phosphatase activities with ARA-AMP and ARA-ATP as substrates.Journal of Histochemistry and Cytochemistry 29, 693–702.

    Google Scholar 

  • Tewari, H. B. &Bourne, G. H. (1962) Histochemical evidence of metabolic cycles in spinal ganglion cells of rat.Journal of Histochemistry and Cytochemistry 10, 42–64.

    Google Scholar 

  • Thiéry, G. &Rambourg, A. (1976) A new staining technique for studying thick sections in the electron microscope.Journal de Microscopie et de Biologie Cellulaire 26, 103–6.

    Google Scholar 

  • Warrington, W. B. &Griffith, F. (1904) On the cells of the spinal ganglia and on the relationship of their histological structure to the axonal distribution.Brain 27, 297–326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rambourg, A., Clermont, Y. & Beaudet, A. Ultrastructural features of six types of neurons in rat dorsal root ganglia. J Neurocytol 12, 47–66 (1983). https://doi.org/10.1007/BF01148087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01148087

Keywords

Navigation