Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. Sh. Kryussar, Zh. Plato, R. Tamkhankar, et al., “A comparison of ductile and fatigue fracture,” in: The Atomic Mechanism of Fracture [in Russian], Gos. Nauch. Tekh. Izv. Lit. po Chern. i Tsvet. Met., Moscow (1963), pp. 535–574.

    Google Scholar 

  2. P. J. E. Forsyth, “Fatigue damage and crack growth in aluminum alloys,” Acta Met.,11, No. 7, 703–715 (1963).

    Google Scholar 

  3. G. A. Miller, “Fatigue fracture appearance and kinetic of striation formation in some high-strength steels,” Trans. Q. ASM,62, No. 6, 651–658 (1969).

    Google Scholar 

  4. C. Laird and G. L. Smith, “Initial stages of damage in high-stress fatigue in some pure metals,” Philos. Mag.,8, No. 1945–1963 (1963).

  5. A. A. Shanyavskii and V. S. Botov, “The rules of fatigue crack development in D16T alloy,” in: The Science and Technology of Civil Aviation [in Russian], No. 2/98 (1975), pp. 10–14.

  6. V. S. Ivanova, L. I. Maslov, and L. K. Bozrova, “The rules of microfracture in stable fatigue crack growth,” Izv. Akad. Nauk SSSR. Met., No. 5, 144–149 (1981).

    Google Scholar 

  7. L. I. Maslov and V. I. Tsarikov, “Features of microfracture in stable fatigue crack growth,” Fiz. Khim. Obrab. Mater., No. 2, 53–59 (1982).

    Google Scholar 

  8. T. Jokobori, M. Kawagishi, and T. Yoshimura, “Kinetic aspects of fatigue crack propaαtion,” in: Proceedings of the 2nd International Conference on Fracture (Brighton) (1969), pp. 803–811.

  9. A. Ya. Krasovskii, O. P. Ostash, V. A. Stepanenko, and S. Ya. Yarema, “The influence of low temperatures on the rate and microfractographic features of fatigue crack development in low-carbon steel,” Probl. Prochn., No. 4, 74–78 (1977).

    Google Scholar 

  10. A. Ya. Krasovskii, The Brittleness of Metals at Low Temperatures [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  11. N. M. Grinberg, I. L. Ostapenko, and E. N. Aleksenko, “The macro- and microfracture of silicon iron in a wide range of amplitudes of deformations in air and in vacuum,” in: Summaries of Stand Papers for the Seventh All-Union Conference on the Fatigue of Metals [in Russian], Inst. Met. im. A. A. Baikova, Moscow (1977), pp. 47–48.

    Google Scholar 

  12. N. M. Grinberg, I. L. Ostapenko, and E. N. Aleksenko, “The fractography of the fatigue fracture of silicon iron in a wide range of deformations in air and in vacuum,” Probl. Prochn., No. 7, 33–38 (1979).

    Google Scholar 

  13. V. I. Verkin and N. M. Grinberg, “Vacuum effect on fatigue behavior of metals and alloys,” Mater. Sci. Eng.,41, No. 2, 149–181 (1979); B. I. Verkin and N. M. Grinberg, The Influence of Vacuum on the Fatigue Fracture of Metals and Alloys [in Russian], Fiz.-Tekh. Inst. Niz. Temp. Akad. Nauk UkrSSR, Kharkov (1979) (Preprint, Pt. I, No. 9–79; Pt. II, No. 10–79).

    Google Scholar 

  14. N. M. Grinberg, “The effect of vacuum on fatigue crack growth,” Int. J. Fatigue, April, 83–95 (1982).

  15. N. M. Grinberg, A. M. Gavrilyakov, N. L. D'yakonenko, et al., “Fatigue crack growth and the plastic zone in air and in vacuum,” Probl. Prochn., No. 4, 20–25 (1981).

    Google Scholar 

  16. N. M. Grinberg, The Rules of Fatigue Crack Growth in Stages IIa and IIb [in Russian], Fiz.-Tekh. Inst. Temp. Akad. Nauk UkrSSR, Kharkov (1983) (Preprint No. 28–83); N. M. Grinberg, “Stage II fatigue crack growth,” Int. J. Fatigue,6, No. 4, 2290242 (1984).

    Google Scholar 

  17. V. A. Serdyuk, “The cyclic strength and crack resistance of constructional magnesium alloys under the action of vacuum and low temperature,” Author's Abstract of Candidate's Thesis, Technical Sciences, Kharkov (1984).

    Google Scholar 

  18. M. N. Georgiev, I. P. Zhegina, and N. Ya. Mezhova, “The relationship of the structure of a fatigue fracture to the parameters of the load cycle and the kinetics of crack growth,” in: Problems of the Fracture of Metals [in Russian], Moscow (1977), pp. 71–77.

  19. S. Kocanda and A. Likovsky, “Fatigue crack growth rate in high-strength steel under bending,” Mem. Sci. Rev. Met.,76, No. 5, 345–350 (1979).

    Google Scholar 

  20. V. V. Larionov, N. A. Makhutov, V. M. Goritskii, and Kh. M. Khanukhov, “The rules of lowcycle damage and failure of 10KhSND steel in a wide range (+20 to −196°C) of low temperatures,” Probl. Prochn., No. 11, 11–17 (1980).

    Google Scholar 

  21. C. Masuda, A. Ohta, S. Nishijima, and E. Sasaki, “Fatigue striation in a wide range of crack propagation rates up to 70 mm/cycle in a ductile structural steel,” J. Mater, Sci.,15, No. 7, 1663–1670 (1980).

    Google Scholar 

  22. J. Waring and H. G. Vaughan, “The relation between striation spacing, macrosocpic crack growth rate, and the low-cycle fatigue life of type 316 stainless steel at 625°C,” Metal. Sci. J.,11, No. 10, 439–446 (1977).

    Google Scholar 

  23. G. W. J. Waldron, A. E. Inckle, and P. Fox., “Application of SEM to the study of surface fractography of fatigue fracture,” in: Proceedings of the 3rd Annual Scanning Electron Microscope Symposium, Chicago, Ill., April, 1970, pp. 297–304.

  24. V. S. Ivanova, V. M. Goritskii, L. G. Orlov, and V. F. Terent'ev, “The dislocation structure of iron at the tip of a fatigue crack,” Probl. Prochn., No. 11, 13–18 (1975).

    Google Scholar 

  25. O. N. Romaniv, E. A. Shur, A. N. Tkach, et al., “The kinetics and mechanism of fatigue crack growth in iron,” Fiz.-Khim. Mekh. Mater., No. 2, 57–66 (1981).

    Google Scholar 

  26. L. R. Botvina, V. N. Shabalina, I. P. Zhegina, and Yu. M. Stoida, “The microrelief of fatigue fractures of aluminum alloy specimens in high-frequency loading,” ibid., No. 5, 41–43 (1980).

    Google Scholar 

  27. L. R. Botvina, S. Ya. Yarema, O. P. Ostash, and I. B. Polutranko, “The kinetic of fatigue fracture of AT3 titanium alloy in air, distilled water, and 3% NaCl aqueous solution,” ibid., No. 2, 17–22 (1984).

    Google Scholar 

  28. L. R. Botvina, S. Ya. Yarema, V. V. Grechko, and L. V. Limar', “The kinetic of fatigue fracture of VT3-1 titanium alloy,” ibid., No. 6, 39–45 (1981).

    Google Scholar 

  29. T. Yokobori, A. T. Yokobori, and A. Kamei, “Dislocation dynamics theory for fatigue crack growth,” Int. J. Fract.,11, No. 5, 781–788 (1975).

    Google Scholar 

  30. P. J. Cain, R. Plankett, and T. E. Hutchinson, “Fatigue crack propagation rates for duralumin in simple bending,” Trans. ASME, Ser. D, J. Basic Eng., No. 2, 88–96 (1975).

    Google Scholar 

  31. A. Baus, H. -P. Lieurade, B. Michaut, and M. Truchon, “Rélation entre les paramétres de fussuration et les caractéristiques cycliques d'une gamme étendue d'aciers,” in: Proceedings of the 4th International Conference on the Strength of Metals and Alloys (Nancy), 1976, Vol. 2, pp. 480–484.

    Google Scholar 

  32. S. Karashima, H. Oikawa, and T. Ogura, “Studies on substructures around a fatigue crack in fcc metals and alloys”, Trans. Jpn. Inst. Met.,9, No. 3, 205–213 (1968).

    Google Scholar 

  33. J. C. Grosskreutz and G. G. Shaw, “Fine subgrain structure adjacent to fatigue cracks,” Acta Met.,20, No. 4, 523–528 (1972).

    Google Scholar 

  34. A. H. Purcell and J. Weertmann, “Transmission electron microscopy of crack tip region of fatigued copper single crystals,” Met. Trans.,A4, No. 1, 349–353 (1973).

    Google Scholar 

  35. D. L. Davidson, J. Lankford, and K. Sato., “Fatigue crack tip plastic zones in low-carbon steel,” Int. J. Fract.,12, No. 4, 579–585 (1976).

    Google Scholar 

  36. A. Jobu, “Microstructural effect of fatigue failure,” in: Mem. Inst. Sci. Ind. Res. Osaka Univ.,36, 73–80 (1979).

    Google Scholar 

  37. M. N. Georgiev, V. Yu. Dogadushkin, N. Ya. Mezhova, et al., “The mechanism of fatigue crack propagation in metallic materials,” Fiz.-Khim. Mekh. Mater., No. 4, 35–42 (1982).

    Google Scholar 

  38. J. E. Pratt, “Dislocation structure in strain-cycled copper as influenced by temperature,” Acta Met.,15, No. 2, 319–327 (1965).

    Google Scholar 

  39. D. L. Holt, “Dislocation cell formation in metals,” J. Appl. Phys.,41, No. 8, 3197–3201 (1970).

    Google Scholar 

  40. A. Plumtree and E. S. Kayali, “Influence of cyclic stress on substructure in aluminum and iron,” in: Strenth of Metals and Alloys (ICSMA6, Melbourne, Aug., 1982), Vol. 2, Pergamon Press, Oxford et al. (1982), pp. 913–918.

    Google Scholar 

  41. D. Kuhlmann-Wildsdorf and J. H. Van der Merwe, “Theory of dislocation sizes in deformed metals,” Mater. Sci. Eng.,55, No. 1, 79–83 (1982).

    Google Scholar 

  42. F. R. N. Nabarro, Z. S. Bazinskii, and D. B. Kholt, The Plasticity of Pure Single Crystals [in Russian], Metallurgiya, Moscow (1967).

    Google Scholar 

  43. D. Broek, Fundamentals of Fracture Mechanics [in Russian], Vysshaya Shkola, Moscow (1980).

    Google Scholar 

  44. N. J. Petch, “The cleavage strength of polycrystals,” J. Iron and Steel Inst.,174, No. 1, 25–33 (1953).

    Google Scholar 

  45. A. N. Stroh, “A theory of the fracture of metals,” Adv. Phys.,6, No. 24, 418–440 (1957).

    Google Scholar 

  46. V. Weiss and D. N. Lal, “A note on threshold condition for fatigue crack propagation,” Met. Trans.,A5, No. 8, 1946–1949 (1974).

    Google Scholar 

  47. K. Sananda and P. Shahinian, “Prediction of threshold stress intensity for fatigue crack growth using a dislocation model,” Int. J. Fract.,13, No. 5, 585–594 (1977).

    Google Scholar 

  48. O. K. Liaw, T. R. Leax, and W. A. Logsdon, “Near threshold fatigue crack growth behavior in metals,” Acta Met.,31, No. 10, 1581–1587 (1983).

    Google Scholar 

  49. S. Taira, K. Tanaka, and M. Hoshida, “Grain-size effect on crack nucleation and growth in long-life fatigue of low-carbon steel,” in: Fatigue Mechanisms, ASTMSTP 675, Philadelphia (1979), pp. 135–173.

  50. A. T. Yokobori and T. A. Yokobori, “Criterion for threshold stress intensity in fatigue crack growth,” in: Advances in Fracture Research, Proc. of the 5th Int. Conf. on Fracture (Cannes), Vol. 3, Francois et al., (eds.), Pergamon Press; Oxford et al. (1981), pp. 1373–1380.

    Google Scholar 

  51. V. I. Verkin, N. M. Grinberg, and V. A. Serdyuk, “Correlation of the parameters of fatigue crack growth with plastic zone size and fracture micromechanisms in vacuum and at low temperatures,” in: Fatigue at Low Temperatures, ASTM STP 857, Philadelphia (1984), pp. 84–100.

  52. A. Yuen, S. W. Hopkins, G. R. Leverant, and C. A. Ray, “Correlations between fracture surface appearance and fracture mechanics parameters for stage II fatigue crack propagation,” Met. Trans.,A5, No. 8, 1833–1842 (1974).

    Google Scholar 

  53. S. Ya. Yarema, “The correlation of the parameters of the Paris equation and the characteristics of cyclic crack resistance of materials,” Prob. Prochn., No. 9, 20–28 (1981).

    Google Scholar 

  54. RD 50-345-82. Method Instructions. Calculations and Tests for Strength. Methods of Mechanical Tests of Metals. Determination of the Characteristics of Fracture Toughness (Crack Resistance) in Cyclic Loading [in Russian], Standartov, Moscow (1982).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 21, No. 2, pp. 55–62, March–April, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinberg, N.M. Spacing of fatigue striations and crack growth rate. Mater Sci 21, 153–160 (1985). https://doi.org/10.1007/BF01150632

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01150632

Keywords

Navigation