Skip to main content
Log in

Dependence of ceramic fracture properties on porosity

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A connected-grain model developed earlier to study the modulus of elasticity as a power-law of density was extended to study the dependence of the flexural strength of polycrystalline ceramics on porosity. Relations were derived for specific surface fracture energy, fracture toughness and flexural strength as power laws of (1 −p), wherep is porosity. Model validity was confirmed with data on α-alumina, UO2, Si3N4, and the YBa2Cu3O7−δ superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Fisher,Ceram. Bull. 65 (1986) 622.

    Google Scholar 

  2. J. Metcholsky Jr,ibid. 68 (1989) 367.

    Google Scholar 

  3. M. R. Ghate, K. E. Markel Jr,L. A. Jarr andS. J. Bossart (eds), “Proceedings of the 7th Annual Gasification and Gas Stream Cleanup Systems Contractors' Review Meeting”, Vol. 1, US DOE/METC-87/6079 (DE 87006495) (US DOE, Washington, 1987).

    Google Scholar 

  4. J. G. Ackers, B. F. M. Bosnjakovic andL. Strachee,Radiat. Prot. Dosim. 7 (1984) 413.

    Google Scholar 

  5. I. L. Kalnin,Ceram. Bull. 46 (1967) 1174.

    Google Scholar 

  6. J. P. Singh,Adv. Ceram. Mater. 3 (1988) 18.

    Google Scholar 

  7. W. Duckworth,J. Amer. Ceram. Soc. 36 (1953) 68.

    Google Scholar 

  8. S. K. Dutta, A. K. Mukhopadhyay andD. Chakraborty,ibid. 71 (1988) 942.

    Google Scholar 

  9. O. Vardar, I. Finnie, D. R. Biswas andR. M. Fulrath,Int. J. Fract. 13 (1977) 215.

    Google Scholar 

  10. V. D. Krstic,Theor. Appl. Fract. Mech. 10 (1988) 24.

    Google Scholar 

  11. A. G. Evans andR. W. Davidge,J. Nucl. Mater. 33 (1969) 249.

    Google Scholar 

  12. A. A. Griffith,Phil. Trans. R. Soc. Lond. A 221 (1920) 163.

    Google Scholar 

  13. A. S. Wagh, R. B. Poeppel andJ. P. Singh,J. Mater. Sci. 26 (1991) 3862.

    Google Scholar 

  14. P. Wong, J. Koplik andJ. P. Tomanic,Phys. Rev. B 30 (1984) 6606.

    Google Scholar 

  15. F. F. Lange,Phil. Mag. 16 (1968) 711.

    Google Scholar 

  16. E. M. Passmore, R. M. Spriggs andT. Vasilos,J. Amer. Ceram. Soc. 48 (1965) 1.

    Google Scholar 

  17. F. F. Lange andK. A. D. Lambe,Phil. Mag. 18 (1969) 129.

    Google Scholar 

  18. M. H. Lewis,ibid. 13 (1967) 1123.

    Google Scholar 

  19. R. W. Rice, K. R. McKinney, C. Cm. Wu, S. W. Freiman andW. J. M. Donough,J. Mater. Sci. 20 (1985) 1392.

    Google Scholar 

  20. R. L. Koble andW. D. Kingery,J. Amer. Ceram. Soc. 29 (1956) 377.

    Google Scholar 

  21. J. P. Singh, H. J. Leu, R. B. Poeppel, E. Van Voorhees, G. T. Goudey, K. Winsley andD. Shi,J. Appl. Phys. 66 (1989) 3154.

    Google Scholar 

  22. J. R. G. Evans, R. Stevans andS. R. Tan,Br. Ceram. Trans. J. 83 (1984) 43.

    Google Scholar 

  23. P. L. Gutshall andG. E. Gross,Engng Fract. Mech. 1 (1969) 463.

    Google Scholar 

  24. N. Iagata andK. Domito,J. Nucl. Mater. 45 (1972/73) 317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagh, A.S., Singh, J.P. & Poeppel, R.B. Dependence of ceramic fracture properties on porosity. J Mater Sci 28, 3589–3593 (1993). https://doi.org/10.1007/BF01159841

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01159841

Keywords

Navigation