Skip to main content
Log in

Details of the reaction graphs for intramolecular isomerizations of the carboranes

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

From proposed mechanisms for framework reorganizations of the carboranes C2B n-2H n ,n = 5–12, we present reaction graphs in which points or vertices represent individual carborane isomers, while edges or arcs correspond to the various intramolecular rearrangement processes that carry the pair of carbon heteroatoms to different positions within the same polyhedral form. Because they contain both loops and multiple edges, these graphs are actually pseudographs. Loops and multiple edges have chemical significance in several cases. Enantiomeric pairs occur among carborane isomers and among the transition state structures on pathways linking the isomers. For a carborane polyhedral structure withn vertices, each graph hasn(n -1)/2 graph edges. The degree of each graph vertex and the sum of degrees of all graph vertices are independent of the details of the isomerization mechanism. The degree of each vertex is equal to twice the number of rotationally equivalent forms of the corresponding isomer. The total of all vertex degrees is just twice the number of edges orn(n - 1). The degree of each graph vertex is related to the symmetry point group of the structure of the corresponding isomer. Enantiomeric isomer pairs are usually connected in the graph by a single edge and never by more than two edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Williams, in: Progress in Boron Chemistry, Vol. 2, ed. R.J. Brotherton and H. Steinberg (Pergamon, Oxford, 1970), p.37.

    Google Scholar 

  2. R.E. Williams and F.J. Gerhart, J. Amer. Chem. Soc. 87 (1965)3513.

    Google Scholar 

  3. W.N. Lipscomb, Science (Washington, DC) 153 (1966)373.

    Google Scholar 

  4. R.B. King, Inorg. Chim. Acta 49 (1981)237.

    Google Scholar 

  5. R.B. King, Theor. Chim. Acta 64 (1984)439.

    Google Scholar 

  6. B.M. Gimarc and J.J. Ott, in: Graph Theory and Topology in Chemistry, ed. R.B. King and D.H. Rouvray (Elsevier, Amsterdam, 1987), p.285.

    Google Scholar 

  7. B.M. Gimarc and J.J. Ott, J. Amer. Chem. Soc. 109 (1987)1388.

    Google Scholar 

  8. B.M. Gimarc and J.J. Ott, Inorg. Chem. 25 (1986)2708.

    Google Scholar 

  9. J.J. Ott and B.M. Gimarc, J. Comput. Chem. 7 (1986)673.

    Google Scholar 

  10. B.M. Gimarc, B. Dai and J.J. Ott, J. Comput. Chem. 10 (1989)14.

    Google Scholar 

  11. J.J. Ott, C.A. Brown and B.M. Gimarc, Inorg. Chem. 28 (1989)4269.

    Google Scholar 

  12. B.M. Gimarc, B. Dai, D.S. Warren and J.J. Ott, J. Amer. Chem. Soc. 112 (1990)2597.

    Google Scholar 

  13. B.M. Gimarc, J.J. Ott and C.A. Brown, Inorg. Chem, submitted.

  14. B.M. Gimarc and J.J. Ott, Inorg. Chem. 28 (1989)2560.

    Google Scholar 

  15. R. Hoffmann and W.N. Lipscomb, Inorg. Chem. 28 (1963)231.

    Google Scholar 

  16. F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

  17. B.M. Gimarc and J.J. Ott, Inorg. Chem. 25 (1986)83.

    Google Scholar 

  18. M.L. McKee, J. Amer. Chem. Soc. 110 (1988)5317.

    Google Scholar 

  19. Z.J. Abdou, G. Abdou, T. Onak and S. Lee, Inorg. Chem. 25 (1986)2678.

    Google Scholar 

  20. Z.J. Abdou, M. Soltis, B. Oh, G. Siways, T. Banuelos, W. Nam and T. Onak, Inorg. Chem. 24 (1985)2363.

    Google Scholar 

  21. T. Onak, P.F. Alexander, G. Siwapinyoyos and J.B. Leach, Inorg. Chem. 18 (1979)2878.

    Google Scholar 

  22. B. Oh and T. Onak, Inorg. Chem. 21 (1982)3150.

    Google Scholar 

  23. E. O'Gorman, T. Banuelos and T. Onak, Inorg. Chem. 27 (1987)912.

    Google Scholar 

  24. E.L. Muetterties, Tetrahedron 30 (1974)1595.

    Google Scholar 

  25. L.J. Guggenberger and E.L. Muetterties, J. Amer. Chem. Soc. 98 (1976)7221.

    Google Scholar 

  26. A. Kaczmarczyk, R.D. Dobrott and W.N. Lipscomb, Proc. Nat. Acad. Sci. USA 48 (1962)729.

    Google Scholar 

  27. W.R. Hertler, W.H. Knoth and E.L. Muetterties, J. Amer. Chem. Soc. 88 (1964)5434.

    Google Scholar 

  28. W.H. Knoth, W.R. Hertler and E.L. Muetterties, Inorg. Chem. 3 (1965)280.

    Google Scholar 

  29. D.A. Kleier, D.A. Dixon and W.N. Lipscomb, Inorg. Chem. 17 (1978)166.

    Google Scholar 

  30. J.A. Potenza and W.N. Lipscomb, Inorg. Chem. 5 (1966)1471; 1478; 1483.

    Google Scholar 

  31. J.A. Potenza and W.L. Lipscomb, Proc. Nat. Acad. Sci. USA 56 (1966)1917; H. Beall and W.N. Lipscomb, Inorg. Chem. 6(1967)874.

    Google Scholar 

  32. S. Papetti and T.L. Heyling, J. Amer. Chem. Soc. 86 (1964)2295.

    Google Scholar 

  33. W.N. Lipscomb and D. Britton, J. Chem. Phys. 33 (1960)275.

    Google Scholar 

  34. M.J.S. Dewar and M.L. McKee, Inorg. Chem. 17 (1978)1569.

    Google Scholar 

  35. D.J. Wales and A.J. Stone, Inorg Chem. 26 (1987)3845.

    Google Scholar 

  36. D. Grafstein and J. Dvorak, Inorg. Chem. 2 (1963)1128.

    Google Scholar 

  37. E.L. Muetterties, Rec. Chem. Prog. 31 (1970)51.

    Google Scholar 

  38. E.L. Muetterties, J. Amer. Chem. Soc. 90 (1968)5097.

    Google Scholar 

  39. E.L. Muetterties, J. Amer. Chem. Soc. 91 (1969)1636.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimarc, B.M., Ott, J.J. Details of the reaction graphs for intramolecular isomerizations of the carboranes. J Math Chem 5, 359–380 (1990). https://doi.org/10.1007/BF01164856

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164856

Keywords

Navigation