Skip to main content
Log in

Evolution of gold mineralization in the Ashanti Gold Belt, Ghana: Evidence from carbonate compositions and parageneses

Entstehung der Goldvererzung im Ashanti Gold Belt, Ghana: Rückschlüsse aus Karbonat zusammensetzungen und Paragenesen

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Ankerite, siderite, calcite and magnesite occur in variable proportions within all host and mineralized rocks of the Bogosu and Prestea mining districts of the Ashanti Gold Belt, Ghana. The compositions of coexisting ankerite-siderite grains establish that complex rhythmically zoned growth banding and replacement textures are present. This compositional variation is attributed to episodic fluctuation in the temperature and composition of fluids in the Bogosu-Prestea mesothermal gold system. Temperatures derived from the ankerite-siderite composition geothermometer are generally consistent with those from calcite-dolomite, arsenopyrite, carbon and oxygen stable isotope, and fluid inclusion geothermometers, and are about 360°C for the metamorphic peak, 400 to 350°C for carbonate alteration of mafic dikes, and 340 to 140°C for gold deposition. The latter range occurs on a thin-section scale and represents separate pulses of fluid in the ore conduit.

Zusammenfassung

In allen Wirtsgesteinen und mineralisierten Gesteinen der Bergbaureviere von Bogosu und Prestea im Ashanti Gold Belt, Ghana treten Ankerit, Siderit, Calcit und Magnesit in unterschiedlichen Verhältnissen auf. Die Zusammensetzung von koexistierenden Ankerit-Siderit-Körnern zeigt eine komplexe, rhythmisch zonierte Wachstumsstreifung und Verärdngungsstrukturen. Diese Änderungen in der Zusammensetzung sind auf episodische Fluktuationen der Temperatur und der Zusammensetzung der Fluide im mesothermalen Goldsystem von Bogosu-Prestea zurückzuführen. Temperaturen nach dem Ankerit-Siderit-Geothermometer stimmen im allgerneinen mit jenen aus Geothermometern, die auf Calcit-Dolomit, Arsenopyrit, den stabilen Isotopen von Kohlenstoff and Sauerstoff und auf Flüssigkeitseinschlüssen beruhen, überein. Sie liegen bei rund 360°C für den Höhepunkt der Metamorphose, bei 400 bis 350°C für die Karbonat Alteration der matischen Gänge and bei 340 bis 140°C für die Gold-Fällung. Der letztgenannte Bereich tritt in Dünnschlif Maßstab auf and repräsentiert einzelne Schübe von Fluid in den Erzgängen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouchami W, Boher M, Michard A, Albarede F (1990) A major 2.1 Ga event of mafic magmatism in West Africa: an early stage of crustal accretion. J Geophys Res 95: 17,605–17,629

    Google Scholar 

  • Anovitz LM, Essene EJ (1987) Phase equilibria in the system CaCO3-MgCO3-FeCO3. J Petrol 28: 389–414

    Google Scholar 

  • Barron BJ (1974) The use of coexisting calcite-ankerite solid solutions as a geothermometer. Contrib Mineral Petrol 36: 147–154

    Google Scholar 

  • Bickle MJ, Powell R (1977) Calcite-dolomite geothermometry for iron-bearing carbonates. Contrib Mineral Petrol 59: 281–292

    Google Scholar 

  • Colvine AC, Fyon JA, Heather KB, Marmont S, Smith PM, Troop DG (1988) Archean lode gold deposits in Ontario. Mines, Minerals Div, Ontario Geol Surv, Misc Paper 139, 136 p

  • Essene EJ (1983) Solid solutions and solvi among metamorphic carbonates with applications to geologic thermometry. In:Reeder RJ (ed) Carbonates: mineralogy and chemistry. MSA Rev Mineral 11: 77–96

  • Goldsmith JR, Newton RC (1969) Calcite-dolomite geothermometry for iron-bearing carbonates. Contrib Mineral Petrol 59: 281–292

    Google Scholar 

  • Goldsmith JR, Witters J, Northrup DA (1962) Studies in the system CaCO3-MgCO3-FeCO3: a method for major-element spectrochemical analysis. 3. Composition of some ferroan dolomites. J Geol 70: 659–687

    Google Scholar 

  • Harker RI, Tuttle OF (1955) Studies in the system CaO-MgO-CO2, part 2. Limits of the solid solution along the binary join CaCO3-MgCO3. Am J Sci 253: 274–282

    Google Scholar 

  • Hastings DA (1982) On the tectonics and metallogenesis of West Africa: a model incorporating new geophysical data. Geoexplor 20: 295–327

    Google Scholar 

  • Hutcheon I, Moore JM (1973) The tremolite isograd near Marble Lake, Ontario. Can J Earth Sci 10: 936–947

    Google Scholar 

  • Junner NR (1940) Geology of the Gold Coast and Western Togoland. Ghana Geol Surv, Bull No. 11

  • Kesse GO (1985) The mineral and rock resources of Ghana. Balkema, Rotterdam, 610p

    Google Scholar 

  • Klemd R, Hirdes W, Olesch M, Oberthür T (1993) Fluid inclusions in quartz-pebbles of the gold-bearing Tarkwaian conglomerates of Ghana as guides to their provenance area. Mineral Deposita 28: 334–343

    Google Scholar 

  • Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can Mineral 14: 364–386

    Google Scholar 

  • Leonardos OH, Jost H, Oliveira GG (1991) Gold deposits and shear zone relationships in the Precambrian of Brazil. In:Ladeira EA (ed) Brazil Gold 91, pp 167–169

  • Leube A, Hirdes W, Mauer R, Kesse GO (1990) The Early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization. Precam Res 46: 139–165

    Google Scholar 

  • Mumin AH (1994) Early Proterozoic Birimian gold mineralization of the Bogosu and Prestea districts of the Ashanti Gold Belt, Ghana, West Africa. Thesis, University of Western Ontario, 312p (unpub)

  • Mumin AH, Fleet ME, Chryssoulis SL (1994) Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti Gold Belt, Ghana: remobilization of “invisible” gold. Mineral Deposita 29: 445–460

    Google Scholar 

  • Mumin AH, Fleet ME, Longstaffe FJ (1995) Evolution of hydrothermal fluids in the Ashanti Gold Belt, Ghana: stable isotope geochemistry of carbonates, graphitic material and quartz Econ Geol (submitted)

  • Nesbitt BE, Essene EJ (1982) Metamorphic thermometry and barometry of a portion of the southern Blue Ridge province. Am J Sci 282: 701–729

    Google Scholar 

  • Oberthtür T, Schmidt Mumm A, Vetter U, Weiser Th, Amanor JA, Gyapong WA, Kumi R, Blenkinsop TG, Chryssoulis S (1993) The Ashanti Goldfields Mine, Ghana: mineralogical characteristics, light stable isotopes and fluid properties.Fenoll Hach-Ali J, Torres-Ruiz J, Gervilla F (eds) Current research in geology applied to ore deposits. Proceedings of the Second Biennial SGA Meeting, Granada, pp 523–526

  • Pan Y, Fleet ME (1992) Calc-silicate alteration in the Hemlo gold deposit, Ontario: mineral assemblages, P-T-X constraints, and significance. Econ Geol 87: 1104–1121

    Google Scholar 

  • Panteleyev A (1990) Gold in the Canadian Cordillera — a focus on mesothermal and epithermal environments. In: Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, GAC/MAC Short Course

  • Phillips GN, Brown IJ (1987) Host rock and fluid control on carbonate assemblages in the Golden Mile dolerite, Kalgoorlie gold deposit, Australia. Can Mineral 25: 265–273

    Google Scholar 

  • Powell R, Condliffe DM, Condlie E (1984) Calcite-dolomite geothermometry in the system CaCO3-MgCO3-FeCO3: an experimental study. J Metam Geol 2: 33–41

    Google Scholar 

  • Robert F (1991) Gold metallogeny of greenstone belts: considerations from the eastern Abitibi subprovince, Canada. In:Ladeira EA (ed) Brazil Gold 91, pp 31–47

  • Rosenberg PE (1967) Subsolidus relations in the system CaCO3-MgCO3-FeCO3 between 350 and 550°C. Am Mineral 52: 787–797

    Google Scholar 

  • Sample JC, Moore JC (1987) Structural style and kinematics of an underplated slate belt, Kodiak and adjacent islands, Alaska. GSA Bull 99: 7–20

    Google Scholar 

  • Sandiford M, Keays RR (1986) Structural and tectonic constraints on the origin of gold deposits in the Ballarat Slate Belt, Victoria. In:Keppie JD, Boyle RW, Haynes SJ (eds) Turbidite-hosted gold deposits. GAC Special Paper 32: 15–24

  • Sestini G (1973) Sedimentology of a paleoplacer: the gold-bearing Tarkwaian of Ghana. In:Amstutz GC, Bernard AJ (eds) Sedimentary ores. Springer, Berlin Heidelberg New York, pp 275–305

    Google Scholar 

  • Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer: pressure considerations and applications to natural assemblages. Can Mineral 23: 517–534

    Google Scholar 

  • Talantsev AS,. Sazonov VN (1979) Variations in compositions of coexisting dolomiteankerite and magnesite-siderite as an index of PT-conditions of mineral formation. Akad Nauk SSSR Ural'skii Nauchaii Tzentr, pp 95–103

  • Taylor PN, Moorbath S, Leube A, Hirdes W (1992) Early Proterozoic crustal evolution in the Birimian of Ghana: constraints from geochronology and isotope geochemistry. Precam Res 56: 97–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mumin, A.H., Fleet, M.E. Evolution of gold mineralization in the Ashanti Gold Belt, Ghana: Evidence from carbonate compositions and parageneses. Mineralogy and Petrology 55, 265–280 (1995). https://doi.org/10.1007/BF01165121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165121

Keywords

Navigation