Skip to main content
Log in

Unitary group tensor operator algebras for many-electron systems: II. One- and two-body matrix elements

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Relying on our earlier results in the unitary group Racah-Wigner algebra, specifically designed to facilitate quantum chemical calculations of molecular electronic structure, the tensor operator formalism required for an efficient evaluation of one- and two-body matrix elements of molecular electronic Hamiltonians within the spin-adapted Gel'fand-Tsetlin basis is developed. Introducing the second quantization-like creation and annihilation vector operators at the unitary group [U(n)] level, appropriate two-box symmetric and antisymmetric irreducible tensor operators as well as adjoint tensors are defined and their matrix elements evaluated in the electronic Gel'fand-Tsetlin basis as single products of segment values. Using these tensor operators, the matrix elements of one- and two-body components of a general electronic Hamiltonian are found. Explicit expressions for all relevant quantities pertaining to at most two-column irreducible representations that are required in molecular electronic structure calculations are given. Relationships with other approaches and possible future extensions of the formalism to partitioned bases or spin-dependent Hamiltonians are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li and J. Paldus, J. Math. Chem. 4 (1990)295.

    Google Scholar 

  2. J. Paldus, J. Chem. Phys. 61 (1974) 379.

    Google Scholar 

  3. J. Paldus, in:Theoretical Chemistry: Advances and Perspectives, Vol. 2, eds. H. Eyring and D. Henderson (Academic Press, New York, 1976) pp. 131–290.

    Google Scholar 

  4. I. Shavitt, Int. J. Quant. Chem. Symp. 11 (1977)131; 12(1978)5.

    Google Scholar 

  5. J. Hinze, ed.,The Unitary Group for the Evaluation of Electronic Energy Matrix Elements, Lecture Notes in Chemistry, Vol. 22 (Springer, Berlin, 1981).

    Google Scholar 

  6. R. Pauncz,Spin Eigenfunctions: Construction and Use (Plenum Press, New York, 1979), ch. 9.

    Google Scholar 

  7. M.A. Robb and U. Niazi, Comp. Phys. Rep. 1 (1984)127.

    Google Scholar 

  8. S. Wilson,Electron Correlation in Molecules (Clarendon Press, Oxford, 1984), ch. 5.

    Google Scholar 

  9. F.A. Matsen and R. Pauncz,The Unitary Group in Quantum Chemistry (Elsevier, Amsterdam, 1986).

    Google Scholar 

  10. J. Paldus, in:Symmetries in Science, Vol. 2, eds. B. Gruber and R. Lenczewski (Plenum Press, New York, 1986), pp. 429–446.

    Google Scholar 

  11. J. Paldus, in:Mathematic Frontiers in Computational Chemical Physics, IMA Series, ed. D.G. Truhlar (Springer, Berlin, 1988), pp. 262–299;

    Google Scholar 

  12. I. Shavitt, in:Mathematical Frontiers in Computational Chemical Physics, IMA Series, ed. D.G. Truhlar (Springer, Berlin, 1988) pp. 300–349.

    Google Scholar 

  13. R. McWeeny,Methods of Molecular Quantum Mechanics, 2nd Ed. (Academic Press, London, 1989), ch. 10.

    Google Scholar 

  14. M.A. Robb and U. Niazi, Rep. Mol. Theory 1 (1990) 23.

    Google Scholar 

  15. J. Paldus, in:Methods in Computational Molecular Physics, NATO ASI Series, Series B, Vol. 293, eds. S. Wilson and G.H.F. Diercksen (Plenum Press, New York, 1992), pp. 57–63, and references therein.

    Google Scholar 

  16. M.J. Downward and M.A. Robb, Theor. Chim. Acta 46 (1977)129.

    Google Scholar 

  17. P.E.M. Siegbahn, J. Chem. Phys. 701979)5391; 72 (1980) 1647; Int. J. Quant. Chem. 18 (1980) 1229; inThe Unitary Group for the Evaluation of Electronic Energy Matrix Elements, Lecture Notes in Chemistry, Vol. 22, ed. J. Hinze (Springer, Berlin, 1981) pp. 119–135; Chem. Phys. Lett. 109 (1984) 417.

    Google Scholar 

  18. B.R. Brooks and H.F. Schaefer, J. Chem. Phys. 70 (1979)5092.

    Google Scholar 

  19. D. Hegarty and M.A. Robb, Mol. Phys. 38 (1979)1795;

    Google Scholar 

  20. H. Lischka, R. Shepard, F. Brown and I. Shavitt, Int. J. Quant. Chem. Symp. 15 (1981)91.

    Google Scholar 

  21. P. Saxe, D.J. Fox, H.F. Schaefer and N.C. Handy, J. Chem. Phys. 77 (1982)5584.

    Google Scholar 

  22. G. Born and I. Shavitt, J. Chem. Phys. 76 (1982)558;

    Google Scholar 

  23. G. Born, Int. J. Quant. Chem. Symp. 16 (1982)633; Int. J. Quant. Chem. 28 (1985) 335.

    Google Scholar 

  24. V.R. Saunders and J.H. van Lenthe, Mol. Phys. 48 (1983)923.

    Google Scholar 

  25. H. Baker and M.A. Robb, Mol. Phys. 50 (1983)1077.

    Google Scholar 

  26. R. Shepard, I. Shavitt, R.M.Pitzer, D.C. Comeau, M. Pepper, H. Lischka, P.G. Szalay, R. Ahlrichs, F.B. Brown and J.-G. Zhao, Int. J. Quant. Chem. Symp. 22 (1988)149.

    Google Scholar 

  27. M.R. Hoffmann and J. Simons, J. Chem. Phys. 88 (1988)993; 90 (1989) 3671.

    Google Scholar 

  28. J. Paldus and B. Jeziorski, Theor. Chim. Acta 73 (1988)81.

    Google Scholar 

  29. S. Zarrabian, C.R. Sarma and J. Paldus, Chem. Phys. Lett. 155 (1989)183;

    Google Scholar 

  30. R.J. Harrison and S. Zarrabian, Chem. Phys. Lett. 158 (1989)393.

    Google Scholar 

  31. G.L. Bendazolli, P. Palmieri and S. Rettrup, J. Chem. Phys. 91 (1989)5518.

    Google Scholar 

  32. R.D. Kent and M. Schlesinger, Phys. Rev. A 39 (1989)19, 3260; 40 (1989) 536; 42 (1990) 1155.

    Google Scholar 

  33. X. Li and J. Paldus, J. Mol. Struct. (THEOCHEM) 229 (1991)249; Int. J. Quant. Chem. 41 (1992) 117;

    Google Scholar 

  34. J. Paldus and X. Li, Israel J. Chem. 31 (1991)351; in:Group Theory in Physics, AIP Conference Proceedings 266, eds. A. Frank, T.H. Seligman and K.B. Wolf (American Institute of Physics, New York, 1992), pp. 159–178.

    Google Scholar 

  35. G.E. Baird and L.C. Biedenharn, J. Math. Phys. 5 (1964)1730.

    Google Scholar 

  36. J.D. Louck, J. Phys. 38 (1970)3.

    Google Scholar 

  37. L.C. Biedenharn and J.D. Louck,Angular Momentum in Quantum Physics, Theory and Application (Addison-Wesley, Reading, MA, 1981).

    Google Scholar 

  38. L.C. Biedenharn and J.D. Louck,The Racah-Wigner Algebra in Quantum Theory (Addison-Wesley, Reading, MA, 1981).

    Google Scholar 

  39. W. Duch and J. Karwowski, Comp. Phys. Rep. 2 (1985)93.

    Google Scholar 

  40. J. Karwowski, in:Methods in Computational Molecular Physics, NATO ASI Series, Series B, Vol. 293, eds. S. Wilson and G.H.F. Diercksen (Plenum Press, New York, 1992), pp. 65–98.

    Google Scholar 

  41. G. W. Drake and M. Schlesinger, Phys. Rev. A 15 (1977)1990.

    Google Scholar 

  42. J. Paldus and M.J. Boyle, Phys. Scripta 21 (1980)295.

    Google Scholar 

  43. J. Paldus and M.J. Boyle, Phys. Rev. A 22 (1980)2299;

    Google Scholar 

  44. M.J. Boyle and J. Paldus, Phys. Rev. A 22 (1980)2316.

    Google Scholar 

  45. J. Paldus and C.R. Sarma, J. Chem. Phys. 83 (1985)5135;

    Google Scholar 

  46. C.R. Sarma and J. Paldus, J. Math. Phys. 26 (1985)1140;

    Google Scholar 

  47. J. Paldus, M.-J. Gao and J.-Q. Chen, Phys. Rev. A 35 (1987)3197;

    Google Scholar 

  48. M.D. Gould and J. Paldus, J. Math. Phys. 28 (1987)2304.

    Google Scholar 

  49. M.D. Gould and J. Paldus, Int. J. Quant. Chem. 30 (1986)327;

    Google Scholar 

  50. M.D. Gould, Int. J. Quant. Chem. 30 (1986)364.

    Google Scholar 

  51. M.D. Gould and J. Paldus, J. Chem. Phys. 92 (1990)7394.

    Google Scholar 

  52. H.S. Green, J. Math. Phys. 12 (1971)2106;

    Google Scholar 

  53. A.J. Bracken and H. S. Green, J. Math. Phys. 12 (1971)2099.

    Google Scholar 

  54. M.D. Gould, J. Math. Phys. 21 (1980)444; 22(1981)15; 27(1986)1944.

    Google Scholar 

  55. M.D. Gould and G.S. Chandler, Int. J. Quant. Chem. 25 (1984)1089; 26 (1984) 44, and references therein.

    Google Scholar 

  56. L.C. Biedenharn, J.D. Louck, E. Chacón and M. Ciftan, J. Math. Phys. 13 (1972)1957;

    Google Scholar 

  57. L.C. Biedenharn and J.D. Louck, J. Math. Phys. 13 (1972)1985;

    Google Scholar 

  58. J.D. Louck and L.C. Biedenharn, J. Math. Phys. 11 (1970)2368; 12 (1971)173;14 (1973) 1336.

    Google Scholar 

  59. X. Li and J. Paldus, J. Math. Chem., in press.

  60. M.D. Gould, J. Paldus and G.S. Chandler, J. Chem. Phys. 93 (1990)4142.

    Google Scholar 

  61. B. Jeziorski and J. Paldus, J. Chem. Phys. 88 (1988)5673; 90 (1989) 2714.

    Google Scholar 

  62. M.D. Gould, X. Li and J. Paldus, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from: Department of Chemistry, Xiamen University, Xiamen, Fujian, PR China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Paldus, J. Unitary group tensor operator algebras for many-electron systems: II. One- and two-body matrix elements. J Math Chem 13, 273–316 (1993). https://doi.org/10.1007/BF01165571

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165571

Keywords

Navigation