Skip to main content
Log in

Theory and computational applications of Fibonacci graphs

  • Review
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The concept of Fibonacci graphs introduced and developed by this author is critically reviewed. The concept has been shown to provide an easypencil-and-paper method of calculating characteristic, matching, counting, sextet, rook, color and king polynomials of graphs of quite large size with limited connectivities. For example, the coefficients of the matching polynomial of 18-annuleno—18-annulene can be obtainedby hand using the definition of Fibonacci graphs. They are (in absolute magnitudes): 1, 35, 557, 5337, 34 361, 157 081, 525 296, 1304 426, 2 416 571, 3 327 037, 3 362 528, 2 440 842, 1 229 614, 407 814, 81936, 8652, 361, 3. The theory of Fibonacci graphs is reviewed in an easy and detailed language. The theory leads to modulation of the polynomial of a graph with the polynomial of a path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Trinajstić,Chemical Graph Theory, 2 Vols. (CRC Boca Raton, Florida, 1983).

    Google Scholar 

  2. I. Gutman and O.E. Polansky,Mathematical Concepts to Organic Chemistry (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  3. I. Gutman, Bull. Soc. Chim. Beograd 47 (1982)453.

    Google Scholar 

  4. H. Hosoya, Bull. Chem. Soc. Japan 44 (1971)2332.

    Google Scholar 

  5. H. Narumi and H. Hosoya, Bull. Chem. Soc. Japan 58 (1985)1778.

    Google Scholar 

  6. H. Hosoya and N. Ohkami, J. Comput. Chem. 4 (1983)585.

    Google Scholar 

  7. I. Gutman, Z. Naturforsch. a 37 (1982)69.

    Google Scholar 

  8. I. Gutman and S. El-Basil, Z. Naturforsch. a 39 (1984)276.

    Google Scholar 

  9. K. Balasubramanian and R. Ramaraj, J. Comput. Chem. 6 (1985)447.

    Google Scholar 

  10. A. Motoyama and H. Hosoya, J. Math. Phys. 18 (1985)1485.

    Google Scholar 

  11. K. Balasubramanian, Chem. Rev. 85 (1985)599.

    Google Scholar 

  12. B.A. Hess, Jr., L.J. Schaad and I. Agranant, J. Amer. Chem. Soc. 100 (1978)5268.

    Google Scholar 

  13. I. Gutman, M. Milun and N. Trinajstić, J. Amer. Chem. Soc. 99 (1977)1692.

    Google Scholar 

  14. M. Randić, B. Ruščić and N. Trinajstić, Croat. Chem. Acta 54 (1981)295.

    Google Scholar 

  15. S. El-Basil, Theor. Chim. Acta 65 (1984)191.

    Google Scholar 

  16. S. El-Basil, Theor. Chim. Acta 65 (1984)199.

    Google Scholar 

  17. S. El-Basil, P. Kiivka and N. Trinajstić, J. Math. Phys. 26 (1985)2396.

    Google Scholar 

  18. I. Gutman and S. El-Basil, Match. 20 (1986)81.

    Google Scholar 

  19. H. Hosoya and T. Yamaguchi, Tetrahedron Lett. (1975)4659; N. Ohkami and H. Hosoya, Theor. Chim. Acta 64(1983)153.

  20. M. Gordon and W.H.T. Davison, J. Chem. Phys. 20 (1952)428.

    Google Scholar 

  21. S. El-Basil, J. Comput. Chem. 8(1987), in press. [22] Programs are available; see, for example, a recent review by Balasubramanian, ref. [11], and references cited therein.

  22. K. Balasubramanian, Int. J. Quant. Chem. 21 (1982)581.

    Google Scholar 

  23. K. Balasubramanian and M. Randić, Theor. Chim. Acta 61 (1982)307.

    Google Scholar 

  24. C.D. Godsil and B.D. McKay, Bull. Australian Math. Soc. 18 (1978)21.

    Google Scholar 

  25. H. Sachs, Publ. Math. (Debrecen) 11 (1964)119. A “chemical” version of Sachs' theory may be found in: N. Trinajstić, Croat. Chem. Acta 49(1977)593.

    Google Scholar 

  26. H. Hosoya and T. Yamaguchi, Tetrahedron Lett. (1975)4660.;

  27. C.D. Codsil and I. Gutman, Croat. Chem. Acta 54 (1981)53.;

    Google Scholar 

  28. See, for example, V. Krishnamurthy,Combinatorics: Theory and Applications (E. Horwood, New York, Halsted Press, 1986).

    Google Scholar 

  29. S. El-Basil, J. Math. Chem. 1 (1987)153.

    Google Scholar 

  30. S. El-Basil, J. Chem. Soc. Faraday Trans. 2, 82 (1986)299.

    Google Scholar 

  31. Line graphs are defined in: F. Harary,Graph Theory (Addison-Wesley, Reading, 1969) Ch. 8.

    Google Scholar 

  32. S. El-Basil and M. Randić, J. Math. Chem. 1 (1987)281.

    Google Scholar 

  33. C. Domb and M.S. Green,Phase Transitions and Critical Phenomena, ed. M.S. Green (Academic Press, London, 1972) Vols. 1–3.

    Google Scholar 

  34. A.T. Balaban and F. Harary, Tetrahedron 24 (1968)2505.

    Google Scholar 

  35. O.E. Polansky and M. Zander, J. Mol. Structure 84 (1982)361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor R. Bruce King for his enthusiastic promotion and contributions to Mathematical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Basil, S. Theory and computational applications of Fibonacci graphs. J Math Chem 2, 1–29 (1988). https://doi.org/10.1007/BF01166466

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166466

Keywords

Navigation