Skip to main content
Log in

Viscous response of an anchored spinning liquid column to various axial excitations

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

For a solidly rotating viscous cylindrical liquid column of finite length the response to axial synchronous, counter- and one-sided excitation is determined for anchored contact lines at the disc-rim. For a rotating column additional responses of inertial waves (hyperbolic range) appear forΩ < 2Ω 0, while in the elliptic rangeΩ < 2Ω 0 the sloshing response occurs. The various responses for the free surface displacement have been numerically evaluated. Only in the one-sided exitation case all resonance peaks appear, while for synchronous excitation only the odd resonances and for counter-excitation only the even resonance peaks occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of column

h :

length of liquid bridge

I n :

modified Bessel function

p :

liquid pressure

r, φ,z :

cylindrical polar coordinates

t :

time

u, v, w :

velocity distribution

\(We = \frac{{\varrho a^3 \Omega o^2 }}{\sigma }\) :

Weber number

z 0 :

excitation amplitude

ϱ:

liquid density

σ:

surface tension

\(\sigma ^ * = \frac{{\sigma a}}{{\varrho v^2 }}\) :

surface tension parameter

\(Oh = \frac{1}{{\sqrt {\sigma ^ * } }}\) :

Ohnesorge number

ζ:

liquid surface displacement

\(v = \frac{\eta }{\varrho }\) :

kinematic viscosity

Ω 0 :

rotational speed

\(\omega _0 = \frac{{\Omega _0 a^2 }}{v}\) :

dimensionless rotational speed

Ω:

forcing frequency

\(\Omega ^ * = \frac{{\Omega a^2 }}{v}\) :

dimensionless forcing frequency

\(\bar \Omega = \frac{\Omega }{{\sqrt {\frac{\sigma }{{\varrho a^3 }}} }}\) :

dimensionless forcing frequency for non-viscous liquid

λa=Λ:

root of bi-cubic Eq.(33)

\(\chi _n = \frac{{n\pi a}}{h}\) :

root of bi-cubic Eq.(33)

References

  1. Scriven, L. E., Sternling, L. V.: Marangoni effects. Nature187, 186–188 (1960).

    Google Scholar 

  2. Chun, Ch.-H., Wuest, W.: Experiments on the transition from the steady to the oscillatory Marangoni convection of a floating zone under reduced gravity effect. Acta Astron.6, 1073–1082 (1979).

    Google Scholar 

  3. Chun, Ch.-H.: Experiments on steady and oscillatory temperature distribution in a floating zone due to the Marangoni convection. Acta Astron.7, 479–488 (1980).

    Google Scholar 

  4. Bauer, H. F.: Marangoni convection in rotating liquid systems. Microgravity Sci. Technol.II, 142–157 (1989).

    Google Scholar 

  5. Bauer, H. F.: Minimization of Marangoni convection. CSME Mech. Engin. Forum 1990, pp. 65–70, Univ. Toronto 1990.

  6. Bauer, H. F., Straßer, U.: Marangoni-convection in a rotating liquid column. Micro Grav. Sci. Techn.VI, 164–175 (1993).

    Google Scholar 

  7. Rayleigh, Lord: On the capillary phenomena of jets. Proc. R. Soc. London Ser.29, 71–79 (1879).

    Google Scholar 

  8. Rayleigh, Lord: On the instability of cylindrical fluid surfaces. Phil. Mag.34, 177–180 (1892).

    Google Scholar 

  9. Lamb, H.: Hydrodynamics. New York: Dover Publ. 1945.

    Google Scholar 

  10. Bauer, H. F.: Natural damped frequencies of an infinitely long column of immiscible viscous liquid. ZAMM64, 475–490 (1984).

    Google Scholar 

  11. Bauer, H. F.: Free surface and interface oscillations of an infinitely long visco-elastic liquid column. Acta Astron.13, 9–22 (1986).

    Google Scholar 

  12. Bauer, H. F.: Bei Fabrikationsprozessen in zylindrischen Flüssigkeitsbrücken unter Mikrogravitation auftretende Störeffekte. Ing. Arch.55, 242–257 (1985).

    Google Scholar 

  13. Meseguer, J.: The breaking of axisymmetric slender bridges. J. Fluid Mech.130, 123–151 (1983).

    Google Scholar 

  14. Rivas, D., Meseguer, J.: One-dimensional self-similar solution of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech.138, 417–429 (1984).

    Google Scholar 

  15. Bauer, H. F.: Response of a viscous liquid column with anchored edges to axial excitation. Z. Flugwiss. Weltraumforsch.16, 42–48 (1992).

    Google Scholar 

  16. Bauer, H. F.: Axial response and transient behavior of a cylindrical liquid column in zero gravity. Z. Flugwiss. Weltraumforsch.14, 174–182 (1990).

    Google Scholar 

  17. Bauer, H. F.: Response of a liquid column to one-sided axial excitation in zero-gravity. Forsch. Ing. Wes.56, 14–21 (1990).

    Google Scholar 

  18. Bauer, H. F.: Response of a liquid column to counter-directional excitation under zero-gravity. J. Spacecraft Rockets27, 675–680 (1990).

    Google Scholar 

  19. Bauer, H. F.: Response of a viscous liquid column to axial excitation in zero-gravity. ZAMM70, 359–369 (1990).

    Google Scholar 

  20. Sanz, A.: The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J. Fluid Mech.156, 101–140 (1985).

    Google Scholar 

  21. Meseguer, J.: Axisymmetric long liquid bridges in a time-dependent microgravity field. Appl. Micrograv. Tech.I, 136–141 (1988).

    Google Scholar 

  22. Bauer, H. F.: Natural axisymmetric frequencies of cylindrical liquid column with anchored free surface. J. S. M. E. Int. J. Ser. III34, 475–480 (1991).

    Google Scholar 

  23. Bauer, H. F.: Response of a nonviscous liquid column and layer with anchored liquid surface to axial excitation. J. S. M. E. Int. J. Ser. II34, 474–481 (1991).

    Google Scholar 

  24. Bauer, H. F.: Response of a viscous liquid column with anchored edges to axial excitation. Z. Flugwiss. Weltraumforsch.16, 42–48 (1992).

    Google Scholar 

  25. Bauer, H. F.: Axial response of differently excited anchored viscous liquid bridges. Arch. Appl. Mech.63, 322–336 (1993).

    Google Scholar 

  26. Perales, J. M.: Dinámica de columnas líquidas. Tesis Doctoral, Universidad Politécnica de Madrid (1990).

  27. Bauer, H. F.: Dynamic behavior of cylindrical liquid columns — Analytical research results for the experiments “LICOR” of the German D-2-Spacelab-Mission. Forschungsbericht der Universität der Bundeswehr München, LRT-WE-9-FB-1-1993.

  28. Gillis, J.: Stability of a column of rotating viscous liquid. Proc. Cambridge Phil. Soc.57, 152–159 (1961).

    Google Scholar 

  29. Gillis, J., Kaufmann, B.: The stability of a rotating viscous jet. Q. Appl. Math.19, 301–308 (1961).

    Google Scholar 

  30. Bauer, H. F.: Coupled oscillations of a solidly rotating and nonrotating finite and infinite liquid bridge of immiscible liquids in zero-gravity. Acta Astron.9, 547–563 (1982).

    Google Scholar 

  31. Bauer, H. F.: Axisymmetric natural frequencies of a rotating infinitelylong viscous liquid column. ZAMM74, 201–210 (1994).

    Google Scholar 

  32. Bauer, H. F.: Natural damped frequencies and axial response of a rotating finite viscous liquid column. Acta Mech.93, 29–52 (1992).

    Google Scholar 

  33. Bauer, H. F.: Asymmetric natural damped frequencies of a rotating infinitely long viscous liquid column. Z. Flugwiss. Weltraumforsch.16, 317–324 (1992).

    Google Scholar 

  34. Bauer, H. F.: Axi-symmetric natural frequencies and response of a spinning liquid column under strong surface tension. Acta Mech.90, 21–35 (1991).

    Google Scholar 

  35. Bauer, H. F., Eidel, W.: Response of an anchored frictionless rotating liquid column to various axial excitations. Z. Flugwiss. Weltraumforsch. (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, H.F., Eidel, W. Viscous response of an anchored spinning liquid column to various axial excitations. Acta Mechanica 116, 153–170 (1996). https://doi.org/10.1007/BF01171427

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171427

Keywords

Navigation