Skip to main content
Log in

A generalized linear thermoelasticity theory for piezoelectric media

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A theory of thermoelasticity for piezoelectric materials which includes heat-flux among the independent constitutive variables is formulated. It is found that the linearized version of the theory admits a finite speed for thermal signals. An equation of energy balance and a theorem on the uniqueness of solution are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord, H. W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids15, 299–309 (1967).

    Google Scholar 

  2. Green, A. E., Lindsay, K. A.: Thermoelasticity. J. of Elasticity2, 1–7 (1972).

    Google Scholar 

  3. Lebon, G.: A generalized theory of thermoelasticity. J. Tech. Phys.23, 37–46 (1982).

    Google Scholar 

  4. Boschi, E., Iesan, D.: A generalized theory of linear micropolar thermoelasticity. Meccanica3, 154–157 (1972).

    Google Scholar 

  5. Dost, S., Tabbarrok, B.: Generalized micropolar thermoelasticity. Int. J. Engng. Sci.16, 173–183 (1978).

    Google Scholar 

  6. Chandrasekharaiah, D. S.: A temperature-rate dependent thermo-piezoelectricity. J. of Thermal Stresses7, 293–306 (1984).

    Google Scholar 

  7. Chandrasekharaiah, D. S.: Heat-flux dependent micropolar thermoelasticity. Int. J. Engng. Sci.24, 1389–1395 (1986).

    Google Scholar 

  8. Mindlin, R. D.: On the equations of motion of piezoelectric crystals, in: Problems of continuum mechanics, pp. 282–290 (Radok, J., ed.). Philadelphia: Society of Industrial and Applied Mathematics 1961.

    Google Scholar 

  9. Nowacki, W.: Foundations of linear piezoelectricity, in: Electromagnetic interactions in elastic solids (Parkus, H., ed.). Wien: Springer-Verlag 1979.

    Google Scholar 

  10. Maxwell, J. C.: On the dynamic theory of gases. Phil. Trans. Roy. Soc. London157, 49–88 (1867).

    Google Scholar 

  11. Peshkov, V.: Second sound in helium. II. J. Phys. USSR8, 131 (1944).

    Google Scholar 

  12. Bentman, B., Sandiford, R. J.: Second sound in solid helium. Scientific American222 (5), 92–101 (1970).

    Google Scholar 

  13. Jackson, H. E., Walker, C. T., McNelly, J. F.: Second sound in NaF. Phys. Rev. Letters25, 26–28 (1971).

    Google Scholar 

  14. Rogers, S. J.: Transport of heat and approach to second sound in some isotropically pure alkali halide crystals. Phys. Rev.3, 1440–1457 (1971).

    Google Scholar 

  15. Cattaneo, C.: On the conduction of heat. Atti del Seminario Matematics e Fisico della Universita di Modena3, 3–21 (1948).

    Google Scholar 

  16. Cattaneo, C.: A form of heat equation which eliminates the paradox of instantaneous propagation. Comptes Rendus247, 431–433 (1950).

    Google Scholar 

  17. Vernotte, P.: Paradoxes in the continuous theory of the heat equation. Comptes Rendus246, 3154–3155 (1958).

    Google Scholar 

  18. Vernotte, P.: The true heat equation. Comptes Rendus247, 2103 (1958).

    Google Scholar 

  19. Vernotte, P.: Some possible complications in the phenomenon of thermal conduction. Comptes Rendus252, 2190 (1961).

    Google Scholar 

  20. Kaliski, S.: Wave equations of heat conduction. Bull. Acad. Poln. Techn.13, 211–219 (1965).

    Google Scholar 

  21. Kaliski, S.: Wave equations of thermoelasticity. Bull. Acad. Poln. Sci. Techn.13, 253–260 (1965).

    Google Scholar 

  22. Atkin, R. J., Fox, N., Vasey, M. W.: A continuum approach to the second sound effect. J. of Elasticity5, 237–248 (1975).

    Google Scholar 

  23. Pao, Y. H., Banerjee, D. K.: A theory of anisotropic thermoelasticity at low reference temperature. J. of Thermal Stresses1, 99–112 (1978).

    Google Scholar 

  24. Toupin, R. A.: A dynamic theory of elastic dielectrics. Int. J. Engng. Sci.1, 101–126 (1963).

    Google Scholar 

  25. Tiersten, H. F.: On the non-linear equations of thermoelectroelasticity. Int. J. Engng. Sci.9, 587–604 (1971).

    Google Scholar 

  26. Hutter, K., Van de Ven, A. A. F.: Field matter interactions in thermoelastic solids (Lecture Notes in Physics, Vol. 88), Berlin: Springer-Verlag 1978.

    Google Scholar 

  27. Kaliski, S.: Wave equations of thermoelectromagnetoelasticity. Proc. Vibr. Probl.6, 231–263 (1965).

    Google Scholar 

  28. Hutter, K.: The foundations of thermodynamics, its basic postulates and implications — A review of modern thermodynamics. Acta Mech.27, 1–54 (1977).

    Google Scholar 

  29. Parkus, H.: Thermoelasticity, 2nd ed., Wien: Springer-Verlag (1976).

    Google Scholar 

  30. Chandrasekharaiah, D. S.: A uniqueness theorem in generalized thermoelasticity. J. of Techn. Phys.25, 345–350 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekharaiah, D.S. A generalized linear thermoelasticity theory for piezoelectric media. Acta Mechanica 71, 39–49 (1988). https://doi.org/10.1007/BF01173936

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01173936

Keywords

Navigation