Skip to main content
Log in

Grain-size dependence of fracture stress in anisotropic brittle solids

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stress concentrations that occur at grain boundaries due to thermal expansion anisotropy and elastic stress concentration are discussed, and the stress intensity factor that results from these stresses is estimated. The procedure for the stress intensity factor calculation is based on the model in which a spherical crystal (grain) is forced into a cavity of equal size possessing annular or radial cracks emanating from the boundary. The stress intensity factor equation thus obtained is extended to include the effect of elastic stress concentration due to the presence of a cavity, and is subsequently used to predict the grain-size dependence of strength in anisotropic brittle ceramics. In assessing the degradation of strength with increasing grain size in non-cubic ceramics, it is shown that, in addition to grain size, the effect of pre-existing crack size must also be considered. Cubic ceramics, on the other hand, are known to exhibit no thermal expansion anisotropy and, based on the present model, their strength is predicted to be governed by the pre-existing flaw size, rather than the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Kirchner andR. M. Gruver,J. Amer. Ceram. Soc. 53 (1970) 232.

    Google Scholar 

  2. J. A. Kuszyk andR. C. Bradt,ibid. 56 (1973) 420.

    Google Scholar 

  3. A. G. Evans andR. W. Davidge,Phil. Mag. 20 (1969) 373.

    Google Scholar 

  4. W. R. Buessem andF. F. Lange,Interceram. 15 (1966) 229.

    Google Scholar 

  5. R. W. Rice andR. C. Pohanka,J. Amer. Ceram. 62 (1979) 559.

    Google Scholar 

  6. Y. Matsuo andH. Sasaki,ibid. 49 (1966) 229.

    Google Scholar 

  7. D. B. Binns, in “Science of Ceramics”, Vol. 1, edited by G. H. Steward (Academic, New York, 1962) pp. 315.

    Google Scholar 

  8. R. W. Davidge andT. J. Green,J. Mater. Sci. 3 (1968) 629.

    Google Scholar 

  9. F. J. P. Clarke,Acta Metall. 12 (1964) 139.

    Google Scholar 

  10. A. G. Evans,ibid. 26 (1978) 1845.

    Google Scholar 

  11. D. R. Clarke,ibid. 28 (1980) 913.

    Google Scholar 

  12. V. D. Krstic andM. D. Vlajic,ibid. 31 (1983) 139.

    Google Scholar 

  13. V. D. Krstic,J. Amer. Ceram. Soc. 67 (1984) 589.

    Google Scholar 

  14. R. W. Davidge andA. G. Evans,Mater. Sci. Eng. 6 (1970) 281.

    Google Scholar 

  15. R. W. Rice,Proc. Br. Ceram. Soc. No. 20 (1971–72) 206.

  16. R. W. Davidge,Acta Metall. 29 (1981) 1695.

    Google Scholar 

  17. S. Timoshenko andJ. N. Goodier, “Theory of Elasticity”, 2nd Edn (McGraw-Hill, New York, 1951) pp. 91

    Google Scholar 

  18. G. I. Barenblatt, in “Advances in Applied Mechanics”, Vol. 7, edited by H. L. Dryden, Th. von Karman and G. Kuerti, (Academic, New York, 1962) pp. 55–126.

    Google Scholar 

  19. P. C. Paris andG. S. Sih, ASTM STP 381 (American Society for Testing and Materials, Philadelphia, 1965) pp. 30–83.

    Google Scholar 

  20. R. G. Hoagland, A. R. Rosenfield andG. T. Hahn,Metall. Trans. 3 (1962) 123.

    Google Scholar 

  21. R. M. Spriggs andT. Vasilos,J. Amer. Ceram. Soc. 46 (1963) 224.

    Google Scholar 

  22. M. I. Mendelson andM. E. Fine, in “Fracture Mechanics of Ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974).

    Google Scholar 

  23. R. C. Pohanka, S. W. Freiman andB. A. Bender,J. Amer. Ceram. Soc. 61 (1978) 72.

    Google Scholar 

  24. R. W. Rice, S. W. Freiman andJ. J. Mecholsky,ibid. 63 (1980) 129.

    Google Scholar 

  25. R. J. Charles, in “Studies of the Brittle Behaviour of Ceramic Materials”, edited by N. A. Weil, Technical Report ASD-TR-61-628, Part II (1963) pp. 370–404.

  26. R. McPherson,J. Amer. Ceram. Soc. 3 (1967) 43.

    Google Scholar 

  27. F. R. Charvat andW. D. Kingery,ibid. 40 (1957) 306.

    Google Scholar 

  28. R. W. Rice, S. W. Freeman andP. F. Becher,ibid. 64 (1981) 345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krstic, V.D. Grain-size dependence of fracture stress in anisotropic brittle solids. J Mater Sci 23, 259–266 (1988). https://doi.org/10.1007/BF01174063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174063

Keywords

Navigation