Skip to main content
Log in

Boundary layer similarity flow driven by power-law shear

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Similarity solution of the Prandtl boundary layer equations describing wallbounded flows and symmetric free-shear flows driven by rotational velocitiesU(y)=βy α are determined for a range of exponents α and amplitudes β. Asymptotic analysis of the equations shows that for α<−1 no similarity solutions with proper algebraic decay exist. For wall-bounded flow, exact solutions found at α=−1/2 and α=1 correspond to an Airy function wall jet and uniform planar Couette flow. Numerical integration of the governing similarity equation reveals singular behaviour for wall-bounded flows as α→α0 = −2/3, and no solutions are found in the range −1<α≦−2/3. For α>−2/3 the shear stressf″(0) parameter is determined as a function of α and β. Symmetric free-shear flow solutions become singular as α→α0 = −1/2 and no solutions are found in the range −1<α≦−1/2. For α>−1/2 the centerline velocityf′(0) is determined as a function of α and β. An asymptotic analysis of the singular behavior of these two problems as α→α0, given in a separate Appendix, shows excellent comparison with the numerical results. Similarity solutions at the critical values α0 have exponential decay in the far field and correspond to the Glauert wall jet for wall-bounded flow and to the Schlichting/Bickley planar jet for symmetric free-shear flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, S.: Concerning some solutions of the boundary layer equations in hydrodynamics. Proc. Cambridge Phil. Soc.,XXVI, Part 1, 1–30 (1930).

    Google Scholar 

  2. Nikuradse, J.: Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren. VDI Forschungsheft No. 356 (1932).

  3. Barenblatt, G. I.: Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. J. Fluid Mech.248, 513–520 (1993).

    Google Scholar 

  4. Barenblatt, G. I., Prostokishin, V. M.: Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data. J. Fluid Mech.248, 521–529 (1993).

    Google Scholar 

  5. Rosenhead, L.: Laminar boundary layers, Oxford: Clarendon Press 1963.

    Google Scholar 

  6. Banks, W. H. H.: Similarity solutions of the boundary-layer equations for a stretching wall. J. Mech. Theor. Appl.2, 375–392 (1983).

    Google Scholar 

  7. Riley, N., Weidman, P. D.: Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary. SIAM J. Appl. Math.49, 1350–1358 (1989).

    Google Scholar 

  8. Burde, G. I.: A class of solutions of the boundary layer equations. Izv. Akad. Nauk USSR Mek. Zhid. Gaza2, 45–51 (1990).

    Google Scholar 

  9. Weidman, P. D., Amberg, M. J.: Similarity solutions for steady laminar convection along heated plates with variable oblique suction: Newtonian and Darcian fluid flow. Q.J. Mech. Appl. Math. (submitted).

  10. Wang, C. Y.: The boundary layers due to shear flow over a still fluid. Phys. FluidsA 4, 1304–1306 (1992).

    Google Scholar 

  11. Higuera, F. J., Weidman, P. D.: Natural convection beneath a downward facing heated plate in a porous medium. Int. J. Heat Mass Transfer (in press).

  12. Ablowitz, M. J., Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering. London Mathematical Society Lecture Note Series 149. Cambridge: University Press 1991.

    Google Scholar 

  13. Abramowitz, M., Stegun, I.: Handbook of mathematical functions. Washington: U. S. Government Printing Office, 1972.

    Google Scholar 

  14. Glauert, M. B.: The wall jet. J. Fluid Mech.1, 625–643 (1956).

    Google Scholar 

  15. Schlichting, H.: Laminare Strahlausbreitung. ZAMM13, 260–263 (1933).

    Google Scholar 

  16. Bickley, W. G.: The plane jet. Phil. Mag.23, 727–731 (1937).

    Google Scholar 

  17. Merkin, J. H., Needham, D. J.: A note on the wall-jet problem. J. Eng. Math.20, 21–26 (1986).

    Google Scholar 

  18. Needham, D. J., Merkin, J. H.: A note on the wall jet problem II. J. Eng. Math.21, 17–22 (1987).

    Google Scholar 

  19. Cohen, J., Amitay, M., Bayly, B. J.: Laminar-turbulent transition of wall-jet flows subjected to blowing and suction. Phys. Fluids A4, 283–289 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidman, P.D., Kubitschek, D.G. & Brown, S.N. Boundary layer similarity flow driven by power-law shear. Acta Mechanica 120, 199–215 (1997). https://doi.org/10.1007/BF01174324

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174324

Keywords

Navigation