Skip to main content
Log in

On multiple spins and texture development. Case study: kinematic and orthotropic hardening

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A general constitutive formulation for large inelastic deformations is presented, employing multiple constitutive and plastic spins in the rate equations of evolution for the tensorial internal variables. The multiplicity of the spins enables the macroscopic description of complex texture development, by allowing differential orientations of the internal variables in the course of deformation. The general case is illustrated by the study of a combined kinematic/orthotropic hardening model. The study is focused on the orientational evolution of the back-stress and, in particular, the orthotropic directions, in what can be called orthotropic texture development. Use of macroscopic and continuum micromechanical models provides interesting results on the texture development in simple shear, expressed by the variation of the plastic spin. The results are compared with available simulations by a Taylor-type polycrystalline model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, E. H.: Elastic-plastic deformations at finite strains ASME J. Appl. Mech.36, 1–6 (1969).

    Google Scholar 

  2. Mandel, J.: Plasticité classique et viscoplasticité. Courses and Lectures, No. 97. International Center for Mechanical Sciences, Udine. Wien-New York: Springer 1971.

    Google Scholar 

  3. Dafalias, Y. F.: A missing link in the macroscopic constitutive formulation of large plastic deformations. In: Plasticity today (Sawczuk, A., Bianchi, G., eds.) pp. 135–151. International Symposium on Recent Trends and Results in Plasticity, Udine., Italy, June 1983. Barking, Essex: Elsevier 1985.

    Google Scholar 

  4. Dafalias, Y. F.: The plastic spin. ASME J. Appl. Mech.52, 865–871 (1985).

    Google Scholar 

  5. Dafalias, Y. F.: The plastic spin in viscoplasticity. Int. J. Solids Struct.26, 149–163 (1990).

    Google Scholar 

  6. Dafalias, Y. F.: Issues on the constitutive formulation at large elastoplastic deformations. Part 1. Kinematics. Acta Mech.69, 119–138 (1987).

    Google Scholar 

  7. Dafalias, Y. F.: Issues on the constitutive formulation at large elastoplastic deformations. Part 2. Kinetics. Acta Mech.73, 121–146 (1988).

    Google Scholar 

  8. Dafalias, Y. F.: Corotational rates for kinematic hardening at large plastic deformations. ASME J. Appl. Mech.50, 561–565 (1983).

    Google Scholar 

  9. Dafalias, Y. F.: On the evolution of structure variables in anisotropic yield criteria at large plastic transformations. In: Failure criteria of structured media (Boehler, J. P., ed.). Editions du C.N.R.S., from the Colloque Internationale du C.N.R.S. no. 351, Villard-de-Lans, June 1983 (in press).

  10. Loret, B.: On the effect of plastic rotation in the finite deformation of anisotropic elastoplastic materials. Mech. Mater.2, 287–304 (1983).

    Google Scholar 

  11. Tigoiu, S. C., Soos, E.: Elastoviscoplastic models with relaxed configurations and internal state variables. ASME Appl. Mech. Rev.43, 131–151 (1990).

    Google Scholar 

  12. Loret, B., Hammoum, F., Dafalias, Y. F.: Computational aspects of large elastoplastic deformations in the presence of anisotropy and plastic spin. (Submitted).

  13. Mandel, J.: Sur la définition de la vitesse de déformation élastique et sa relation avec la vitesse de contrainte. Int. J. Solids Struct.17, 873–878 (1981).

    Google Scholar 

  14. Mandel, J.: Sur la définition de la vitesses de déformation élastique en grande transformation elastoplastique. Int. J. Solids Struct.19, 573–578 (1983).

    Google Scholar 

  15. Aravas, N.: Finite elastoplastic transformation of anisotropic metals. Int. J. Solids Struct. (in press).

  16. Dafalias, Y. F.: On constitutive spins at large inelastic deformations. In: Finite inelastic deformations (Besdo, D., Stein, E., eds.). IUTAM Symposium, Hannover, August 1991. Springer (in press).

  17. Zbib, H. M., Aifantis, E. C.: On the concept of relative and plastic spins and its implications to large deformation theories. Part II. Anisotropic hardening plasticity. Acta Mech.75, 35–56 (1988).

    Google Scholar 

  18. Dafalias, Y. E., Cho, H. W.: Verification of the plastic spin concept in viscoplasticity. In: Advances in plasticity 1989 (Khan, A. S., Tokuda, M., eds.), pp. 287–290, 2nd Int. Symp. on Plasticity and its Current Applications, Mie, Japan, 1989. New York: Pergamon 1989.

    Google Scholar 

  19. Montheillet, F., Cohen, M., Jonas, J. J. Axial stresses and texture development during the torsion testing of Al, Cu and α-Fe. Acta Metall.,32, 2077–2087 (1984).

    Google Scholar 

  20. Hill, R.: The mathematical theory of plasticity. London.: Oxford University Press 1950.

    Google Scholar 

  21. Dafalias, Y. F., Rashid, M. M.: The effect of plastic spin on anisotropic material behavior. Int. J. Plasticity5, 227–246 (1989).

    Google Scholar 

  22. Boehler, J. P.: A simple derivation of presentation for non-polynomial constitutive equations in some cases of anisotropy. ZAMM59, 157–167 (1979).

    Google Scholar 

  23. Liu, I. S.: On representations of anisotropic invariants. Int. J. Solids Struct.20, 1099–1109 (1982).

    Google Scholar 

  24. Loret, B., Dafalias, Y. F.: The effect of anisotropy and plastic spin on fold formations. J. Mech. Phys. Sol.40, 417–439 (1992).

    Google Scholar 

  25. Dafalias, Y. F.: The plastic spin concept and a simple illustration of its role in finite plastic transformations. Mech. Mater.3, 223–233 (1984).

    Google Scholar 

  26. Hill, R.: Aspects of invariance in solid mechanics. In.: Advances in applied mechanics (Yih, C. S. ed.) vol. 18, pp. 1–75. New York: Academic Press 1978.

    Google Scholar 

  27. Clement, A.: Prediction of deformation texture using a physical principle of conservation. Mater. Sci. Eng.55, 203–210 (1982).

    Google Scholar 

  28. Van der Giessen, E.: On a continuum representation of deformation-induced anisotropy. In: Advances in constitutive laws for engineering materials (Fan, J., Murakami, S., eds.), pp. 502–509. Int. Conf. on Constitutive Laws for Engin. Materials, Chongqing, China, August 1989. New York: Int. Academic Publishers 1989.

    Google Scholar 

  29. Van der Giessen, E., Van Houtte, P.: A 2D analytical multiple slip model for continuum texture development and plastic spin. Report No. 927, Delft University of Technology, Laboratory for Engineering Mechanics, November 1990., and Mech. Mater.13, 93–115 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dafalias, Y.F. On multiple spins and texture development. Case study: kinematic and orthotropic hardening. Acta Mechanica 100, 171–194 (1993). https://doi.org/10.1007/BF01174788

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174788

Keywords

Navigation