Skip to main content
Log in

On the shape and stability of a conducting fluid drop rotating in an electric field

Die Form und Stabilität eines leitenden, in einem elektrischen Feld rotierenden Flüssigkeitstropfens.

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The equilibrium and stability of an isolated, inviscid, incompressible, neutral conducting fluid drop whose axis of uniform rotation coincides with the direction of a uniform applied electric field are examined by using an appropriate extension of the virial method developed byChandrasekhar. Rotating spherical, spheroidal, and ellipsoidal equilibrium shapes are shown to satisfy the first twelve moment equations. A linear, one-parameter (the elongation) family of equilibrium curves relates the electrostatic energy,x, to the square of the angular momentum,y, of a given spheroidal shape. Conditions for the onset of instability, obtained from a linearized normal-mode analysis associated with second-harmonic deformations, restrict stable spheroidal configurations to a closed region of thisx−y configuration plane. Genuine triaxial configurations are shown to bifurcate from these axisymmetric configurations in the same manner as the classical, self-gravitating Jacobi ellipsoids bifurcate from the Maclaurin spheroids.

Zusammenfassung

Gleichgewicht und Stabilität eines isolierten, reibungsfreien, inkompressiblen, neutralen, leitenden, gleichförmig rotierenden Flüssigkeitstropfens, dessen Rotationsachse mit der Richtung eines homogenen elektrischen Feldes übereinstimmt, werden mit Hilfe einer passenden Erweiterung der vonChandrasekhar entwickelten Virialmethode untersucht. Es wird gezeigt, daß die rotierenden sphärischen, sphäroidischen und elliptischen Gleichgewichtsformen den ersten zwölf Momentengleichungen genügen. Eine lineare, einparametrige (Parameter ist die Elongation, d. h. das Verhältnis der beiden Achsen) Familie von Gleichgewichtskurven verknüpft die elektrostatische Energie,x mit dem Quadrat des Drehimpulses,y einer gegebenen sphäroidischen Form. Bedingungen für den Beginn der Instabilität werden durch eine Untersuchung der charakteristischen Oszillationsfrequenzen (Störungsrechnung) erhalten. Sie beschränken stabile Konfigurationen auf einen geschlossenen Bereich dieserx−y-Konfigurationsebene. Es wird gezeigt, daß echte dreiachsige Konfigurationen von diesen axialsymmetrischen Konfigurationen in derselben Weise abzweigen wie die klassischen, durch Eigengravitation zusammengehaltenen Jacobischen Ellipsoide von den Maclaurinschen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebovitz, N. R.: The Virial tensor and its Application to Self-Gravitating Fluids. Astrophys. J.134, 500–536 (1961).

    Google Scholar 

  2. Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. Yale University Press. 1969.

  3. Chandrasekhar, S.: The Stability of a Rotating Liquid Drop. Proc. Roy. Soc.A 286, 1–26 (1965).

    Google Scholar 

  4. Taylor, G. I.: Disintegration of Water Drops in an Electric Field. Proc. Roy. Soc.A 280, 383–397 (1964).

    Google Scholar 

  5. Rosenkilde, C. E.: A Dielectric Fluid Drop in an Electric Field. Proc. Roy. Soc.A 312, 473–494 (1969).

    Google Scholar 

  6. Brazier-Smith, P. R.: Stability and Shape of Isolated Pairs of Water Drops in an Electric Field. Phys. Fluids14, 1–6 (1971).

    Google Scholar 

  7. Brazier-Smith, P. R.: The Stability of a Water Drop Oscillating with Finite Amplitude in an Electric Field. J. Fluid Mech.50, 417–430 (1971).

    Google Scholar 

  8. Brazier-Smith, P. R.: The Stability of Charged Drops in Uniform Electric Fields. Quart. J. R. Met. Soc.98, 434–439 (1972).

    Google Scholar 

  9. Habip, L. M., J. Siekmann, andS. C. Chang: On the Shape of a Rotating Liquid Drop in an Electric Field. Acta Mechanica4, 107–114 (1967).

    Google Scholar 

  10. Rosenkilde, C. E.: Surface-Energy Tensors. J. Math. Phys.8, 84–88 (1967).

    Google Scholar 

  11. Stettner, R.: Effect of Electromagnetic Radiation on the Secular Stability of a Homogeneous, Charged, Rotating Drop. J. Math. Phys.12, 1159–1162 (1971).

    Google Scholar 

  12. Rosenkilde, C. E.: The Tensor Virial-Theorem Including Viscous Stress and the Oscillations of a Maclaurin Spheroid. Astrophys. J.148, 825–832 (1967).

    Google Scholar 

  13. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press 1961.

    Google Scholar 

  14. Lord Rayleigh: The Equilibrium of Revolving Liquid under Capillary Force. Phil. Mag.28, 161–170 (1914).

    Google Scholar 

  15. Appell, P.: Trâité de Mecanique Rationelle, 2nd ed., Vol. 4, Pt. 1, Ch. 9. Paris: Gauthier-Villars. 1932.

    Google Scholar 

  16. Rosenkilde, C. E.: Stability of Axisymmetric Figures of Equilibrium of a Rotating Charged Liquid Drop. J. Math. Phys.8, 98–118 (1967).

    Google Scholar 

  17. Garton, C. G., andZ. Krasucki: Bubbles in Insulating Liquids: Stability in an Electric Field. Proc. Roy. Soc.A 280, 211–226 (1964).

    Google Scholar 

  18. Rosenkilde, C. E.: Surface-Energy Tensors for Ellipsoids. J. Math. Phys.8, 88–97 (1967).

    Google Scholar 

  19. Sozou, C.: A Rotating Spherical Liquid Drop in an Electric Field. J. Fluid Mech.56, 305–312 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenkilde, C.E., Randall, R.R. On the shape and stability of a conducting fluid drop rotating in an electric field. Acta Mechanica 20, 167–186 (1974). https://doi.org/10.1007/BF01175922

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01175922

Keywords

Navigation