Skip to main content
Log in

A transverse shear deformation theory for homogeneous monoclinic plates

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A general two-dimensional theory suitable for the static and/or dynamic analysis of a transverse shear deformable plate, constructed of a homogeneous, monoclinic, linearly elastic material and subjected to any type of shear tractions at its lateral planes, is presented. Developed on the basis of Hamilton's principle, in conjunction with the method of Lagrange multipliers, this new theory accounts for an unlimited number of choices of through-thickness displacement distributions, while, starting with the smallest possible number of independent displacement components (five, for a shear deformation theory), it is capable of further operating with as many degrees of freedom as desired. For the particular case of a theory operating with five degrees of freedom, special attention is given to displacement expansions producing symmetric, through thicknes, distributions of transverse shear strain. For the cylindrical bending problem of a specially orthotropic plate, the governing equations of that five-degrees-of-freedom theory are solved and for three different choices of symmetric, through tickness, transverse shear deformation, numerical results are obtained and compared with corresponding results based on the exact three-dimensional solution existing in the literature. The comparisons made show clearly, that the multiple options offered by the new theory, by either suitably altering the displacement expansions or gradually increasing the degrees of freedom involved, will be found useful in future studies dealing with the static and/or dynamic analysis of homogeneous plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soldatos, K. P.: A general laminated plate theory accounting for continuity of displacements and transverse shear stresses at material interfaces. Comp. Struct. (in press).

  2. Soldatos, K. P.: On certain refined theories for plate bending. J. Appl. Mech.55, 994–995 (1988).

    Google Scholar 

  3. Reddy, J. N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech.51, 745–752 (1984).

    Google Scholar 

  4. Pagano, N. J.: Exact solution for composite laminates in cylindrical bending. J. Compos. Mater.3 398–411 (1969).

    Google Scholar 

  5. Jones, R. M.: Mechanics of composite materials. New York: McGraw Hill 1975.

    Google Scholar 

  6. Whitney, J. M., Pagano, N. J.: Shear deformation in heterogeneous anistropic plates. J. Appl. Mech.,37, 1031–1036 (1970).

    Google Scholar 

  7. Reissner, E.: The effect of tranverse shear deformation on the bending of elastic plates. J. Appl. Mech.12, 69–77 (1945).

    Google Scholar 

  8. Mindlin, R. D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech.18, 31–38 (1951).

    Google Scholar 

  9. Reissner, E.: On transverse bending of plates, including the effect of transverse shear deformation. Int. J. Solids Struct.11, 569–573 (1975).

    Google Scholar 

  10. Levinson, M.: An accurate simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun.7, 343–350 (1980).

    Google Scholar 

  11. Reddy, J. N.: A generalisation of two-dimensional theories of laminated composite plates. Comm. Appl. Num. Meth.3, 173–180 (1987).

    Google Scholar 

  12. Noor, A. K., Burton, W. S.: Assessment of shear deformation theories for multilayered composite plates. Appl. Mech. Rev.42, 1–10 (1989).

    Google Scholar 

  13. Bert, C. W.: A critical evaluation of new plate theories applied to laminated composites. Comp. Struct.2, 329–347 (1984).

    Google Scholar 

  14. Bhimaraddi, A., Stevens, L. K.: A higher order theory for the free vibration of orthotropic, homogeneous, and laminated rectangular plates. J. Appl. Mech.51, 195–198 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldatos, K.P. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica 94, 195–220 (1992). https://doi.org/10.1007/BF01176650

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176650

Keywords

Navigation