Skip to main content
Log in

An ideally viscoplastic analysis of shock profiles

Eine ideal-viskoplastische Untersuchung von Stoßwellen

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In previous work the authors have shown examples of the concept of ideal viscoplasticity applied to the analysis of rate sensitive material response. The aim of these idealizations has been to generate reasonably simple solutions that exhibit the essential features found experimentally. In this paper a closed form solution is developed for the problem of a shock wave propagating without change of shape. A very simple approximate expression is found that is in excellent agreement with the exact solution, and simple approximations are obtained for the largest strain rate and the shock thickness. The solution implies that dislocation behavior rather than non-linearity in the material pressure, volume relation is primarily responsible for the decrease of shock thickness with impact intensity.

Zusammenfassung

In einer vorangegangenen Arbeit haben die Autoren Beispiele der Anwendung der idealen Viskoplastizität zur Untersuchung des Verhaltens geschwindigkeitsabhängiger Werkstoffe gezeigt. Ziel dieser Idealisierungen war die Entwicklung einfacher Lösungen, die jedoch die wesentlichen, experimentell gefundenen Erscheinungen wiedergeben. In dieser Arbeit wird eine geschlossene Lösung des Problems der Ausbreitung einer Stoßwelle ohne Gestaltswechsel entwicklet. Ein sehr einfacher Näherungsausdruck, der ausgezeichnet mit der exakten Lösung übereinstimmt, wird gefunden, und einfache Näherungen für die größte Verzerrungsgeschwindigkeit und die Stoßwellendicke werden angegeben. Die Lösung zeigt, daß vor allem Versetzungsverhalten und weniger die Nichtlinearität im Druck-Volumen-Gesetz für den Abfall der Stoßwellendicke mit zunehmender Stoßintensität verantwortlich ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkes, E. W.: The permanent deformation of a cantilever struck transversely at its tip. Proc. Royal. Soc.A 228, 464 (1955).

    Google Scholar 

  2. Bodner, S. R., Symonds, P. S.: Experimental and theoretical investigation of the plastic deformation of cantilever beams subjected to impulsive loading. J. Appl. Mech.29, 719 (1962).

    Google Scholar 

  3. Hopkins, H. G., Prager, W.: On the dynamics of plastic circular plates. Z. angew. Math. Phys.5, 317 (1954).

    Google Scholar 

  4. Wang, A. J., Hopkins H. G.: On the plastic deformation of built-in circular plates under impulsive load. J. Mech. Phys. Solids3, 22 (1954).

    Google Scholar 

  5. Cristescu, N.: Dynamic Plasticity. Amsterdam: North Holland. 1967.

    Google Scholar 

  6. Gilman, J. J.: Micromechanics of Flow in Solids. New York: McGraw-Hill. 1969.

    Google Scholar 

  7. Gillis, P. P., Kelly, J. M.: Ideal viscoplasticity. Acta Met.20, 947 (1972).

    Google Scholar 

  8. Keshavan, M. K., Gillis, P. P.: On dislocation multiplication. J. Phys. F.: Metal Phys.5, 903 (1975).

    Google Scholar 

  9. Gorman, J. A., Wood, D. S., Vreeland, T., jr.: Mobility of dislocations in aluminium. J. Appl. Phys.40, 833, 903 (1969).

    Google Scholar 

  10. Kelly, J. M., Gillis, P. P.: The influence of a limiting dislocation flux on the mechanical response of polycrystalline metals. Int. J. Solids Structures10, 45 (1974).

    Google Scholar 

  11. Mason, W. P.: Physical Acoustics. New York: Academic Press. 1966.

    Google Scholar 

  12. Lothe, J.: Theory of dislocation mobility in pure slip. J. Appl. Phys.33, 3116 (1962).

    Google Scholar 

  13. Dorn, J. E., Mitchell, J. B., Hauser, F. E.: Dislocation dynamics. Exp. Mech.5, 353 (1965).

    Google Scholar 

  14. Ferguson, W. G., Kumar, A., Dorn, J. E.: Dislocation damping in aluminum at high strain rates. J. Appl. Phys.38, 1863 (1967).

    Google Scholar 

  15. Kumar, A., Hauser, F. E., Dorn, J. E.: Viscous drag on dislocations in aluminum at high strain rates. Acta Met.16, 1189 (1968).

    Google Scholar 

  16. Burke, J. J., Weiss, V.: Shock Waves and the Mechanical Properties of Solids. Syracuse: Syracuse University Press. 1971.

    Google Scholar 

  17. Bland, D. R.: On shock structure in a solid. J. Inst. Maths. Applics.1, 56 (1965); and: Finite elastodynamics. Ibid. J. Inst. Maths. Applics.2, 327 (1966).

    Google Scholar 

  18. Johnson, J. N., Barker, L. M.: Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. J. Appl. Phys.40, 4321 (1969).

    Google Scholar 

  19. Schuler, K. W.: Propagation of steady shock waves in polymethyl methacrylate. J. Mech. Phys. Solids18, 277 (1970).

    Google Scholar 

  20. Kelly, J. M.: Non-linear constitutive relations for plane shock propagation in viscoplastic solids. Arch. Mech. Stos.1, 22 (1970).

    Google Scholar 

  21. Swan, G. W., Duvall, G. E., Thornhill, C. K.: On steady wave profiles in solids. J. Mech. Phys. Solids21, 215 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 1 Figure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, J.M., Gillis, P.P. An ideally viscoplastic analysis of shock profiles. Acta Mechanica 26, 47–57 (1977). https://doi.org/10.1007/BF01177135

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177135

Keywords

Navigation