Skip to main content
Log in

Electromagnetic wave propagation in non-linear dielectric media

Ausbreitung elektromagnetischer Wellen in nichtlinearen dielektrischen Stoffen

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A modification of Bergman's integral operator method is applied to a hodograph system descriptive of linearly polarised plane electromagnetic pulse propagation in non-linear dielectrics. Series solutions of the system are thereby generated corresponding to general D-E and B-H relations. For certain non-linear ‘constitutive laws’ the governing wave propagation equations are reduced to a hyperbolic canonical form associated with the classical wave equation and closed form integration is thereby achieved. The availability of arbitrary parameters in these laws allows approximation to non-linear dielectric laws derived empirically. Moreover, it is noted how a generalised version of Weinstein's Correspondence Principle may be utilised to generate iteratively more general non-linear constitutive laws for which reduction to canonical form may be obtained.

Zusammenfassung

Eine Modifikation der Bergmanschen Integraloperatorenmethode wird auf ein, die Ausbreitung linear-polarisierter ebener elektromagnetischer Wellen in einem nichtlinearen Dielektrikum beschreibendes Hodographensystem angewendet. Allgemeinen D-E- und B-H-Beziehungen entsprechende Lösungen des Systems in Form von Reihen werden dadurch hergeleitet. Für bestimmte nichtlineare Werkstoffgesetze reduzieren sich die Grundgleichungen der Wellenausbreitung zu einer hyperbolischen kanonischen Form (der klassischen Wellengleichung) und ermöglichen eine geschlossene Lösung. In diesen Gesetzen auftretende freie Parameter gestatten die Anpassung an empirisch ermittelte nichtlineare Werkstoffgesetze. Weiter wird gezeigt, wie eine Verallgemeinerung des Weinsteinschen Korrespondenzprinzips zur iterativen Erzeugung allgemeiner nichtlinearer Werkstoffgesetze, für die Reduktionen auf kanonische Formen möglich sind, verwendet werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffrey, A.: Non-dispersive wave propagation in non-linear dielectrics. Zeit. angew. Math. Phys.19, 741 (1968).

    Google Scholar 

  2. Broer, L. J. F.: Wave propagation in nonlinear media. Zeit. angew. Math. Phys.16, 18 (1965).

    Google Scholar 

  3. Jeffrey, A., Korobeinikov, V. P.: Formation and decay of electromagnetic shock waves. Zeit. angew. Math. Phys.20, 440 (1969).

    Google Scholar 

  4. Venkataraman, E., Rivlin, R. S.: Propagation of first order electromagnetic discontinuities in an isotropic medium. Tech. Rep. No. CAM-110-9 (BRL CR No. 7), Lehigh U., 1970.

  5. de Martini, F., Townes, C. H., Gustafson, T. K., Kelley, P. L.: Self-steeping of light pulses. Phys. Rev.164, 312 (1967).

    Google Scholar 

  6. Cekirge, H. M., Varley, E.: Large amplitude waves in bounded media I. Reflexion and transmission of large amplitude shockless pulses at an interface. Phil. Trans. Roy. Soc. (London) A273, 261 (1973).

    Google Scholar 

  7. Eringen, A. C., Suhubi, E. S.: Elastodynamics. New York-London: Academic Press. 1974.

    Google Scholar 

  8. Kazakia, J. Y., Varley, E.: Large amplitude waves in bounded media II The deformation of an impulsively loaded slab: the first reflexion III The deformation of an impulsively loaded slab: the second reflexion. Phil. Trans. Roy. Soc. (London)A 277, 191 (1974).

    Google Scholar 

  9. Rogers, C.: Iterated Baecklund-type transformations and the propagation of disturbances in non-linear elastic materials. J. Math. Anal. Appl.49, 638 (1975).

    Google Scholar 

  10. Rogers, C.: On applications of generalised Baecklund transformations to Continuum Mechanics, in: Bäcklund Transformations Lecture Notes in Physics. Berlin-Heidelberg-New York: Springer. 1976.

    Google Scholar 

  11. Bateman, H.: The lift and drag functions for an elastic fluid in two-dimensional irrotational flow. Proc. Nat. Acad. Sci. U.S.A.24, 246 (1938).

    Google Scholar 

  12. Rogers, C.: The construction of invariant transformations in plane rotational gasdynamics. Arch. Rat. Mech. Anal.47, 36 (1972).

    Google Scholar 

  13. Rogers, C., Castell, S. P., Kingston, J. G.: On invariance properties of conservation laws in non-dissipative planar magneto-gasdynamics. J. de Mécanique13, 343 (1974).

    Google Scholar 

  14. Rogers, C., Kingston, J. G.: Reciprocal properties in quasi one-dimensional non-steady oblique field magneto-gasdynamics. J. de Mécanique15, 185 (1976).

    Google Scholar 

  15. Loewner, C.: Generation of solutions of systems of partial differential equations of gasdynamics. NACA, Technical Note 2065 (1950).

  16. Power, G., Rogers, C., Osborn, R. A.: Baecklund and generalised Legendre transformations in gasdynamics. Zeit. angew. Math. Mech.49, 333 (1969).

    Google Scholar 

  17. Rogers, C.: Transformation theory in gas and magneto-gasdynamics. Ph. D. thesis, University of Nottingham (1969).

  18. Clements, D. L., Rogers, C.: On wave propagation in inhomogeneous elastic media. Int. J. Solids & Structures10, 661 (1974).

    Google Scholar 

  19. Clements, D. L., Rogers, C.: Wave propagation in (N+1)-dimensional spherically symmetric inhomogeneous elastic media. Can. J. Phys.52, 1246 (1974).

    Google Scholar 

  20. Clements, D. L., Rogers, C.: On the theory of stress concentration for shear-strained prismatical bodies with a non-linear stress-strain law. Mathematika22, 34 (1975).

    Google Scholar 

  21. Kazakia, J. Y., Venkataraman: Propagation of electromagnetic waves in a non-linear dielectric slab. Zeit. angew. Math. Phys.26, 61 (1975).

    Google Scholar 

  22. Bergman, S.: Integral Operators in the Theory of Linear Partial Differential Equations. (Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 23.) Berlin-Heidelberg-New York: Springer. 1971.

    Google Scholar 

  23. Tsien, S.: Two-dimensional subsonic flow of compressible fluids. J. Aero. Sci.6, 399 (1939).

    Google Scholar 

  24. Coburn, N.: The Kármân-Tsien pressure volume relation in the two-dimensional supersonic flow of compressible fluids. Quart. Appl. Math.3, 106 (1945).

    Google Scholar 

  25. Kittel, C.: Introduction to Solid State Physics. New York: J. Wiley. 1968.

    Google Scholar 

  26. Bers, L., Gelbart, A.: On a class of differential equations in mechanics of continua. Quart. Appl. Math.1, 168 (1943).

    Google Scholar 

  27. Burns, J. C.: The iterated equation of generalised axially symmetric potential theory V. Generalised Weinstein correspondence principle. J. Austr. Math. Soc.11, 129 (1970).

    Google Scholar 

  28. Clements, D. L., Rogers, C.: On the application of a Baecklund transformation to linear isotropic elasticity. J. Inst. Maths. Applics.14, 23 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, C., Cekirge, H.M. & Askar, A. Electromagnetic wave propagation in non-linear dielectric media. Acta Mechanica 26, 59–73 (1977). https://doi.org/10.1007/BF01177136

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177136

Keywords

Navigation