Skip to main content
Log in

The deformations and stresses in floating ice plates

Deformation und Spannungen schwimmender Eisplatten

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In the past, the analyses of floating ice plates subjected to static or dynamic loads were based on the theory of a thin homogeneous plate, although in actual floating ice plates Young's modulus may vary strongly with depth. Recently,A. Assur concluded, on the basis of a heuristic argument, that the solutions obtained for homogeneous plates may be used for floating ice plates, if a modified flexural rigidity is used. The purpose of the present paper is to study this question, by establishing a mathematically consistent formulation for the dynamic plate equation, utilizing Hamilton's Principle in conjunction with the three dimensional theory of elasticity. It is proven that for a variable Young's modulus and a constant Poisson's ratio the resulting formulations for plates and beams are the same as those for the corresponding homogeneous problems, if a modified flexural ridigity is used; thus confirmingAssur's conclusion. It is shown that the stress distribution is not linear and that the stress formula\(\sigma _{\max } = M{{z_0 } \mathord{\left/ {\vphantom {{z_0 } I}} \right. \kern-\nulldelimiterspace} I}\) used by a number of investigators for the determination of the carrying capacity of a floating ice plate, as well as for the computation of failure stresses from tests on floating ice beams, is not applicable. Correct formulas are derived, corresponding stress distributions are presented and the consequences of the findings discussed.

Zusammenfassung

Obwohl der Elastizitätsmodul in schwimmenden Eisplatten über die Plattendicke stark veränderlich sein kann, gingen die in der Vergangenheit durchgeführten Untersuchungen schwimmender Eisplatten unter statischer und dynamischer Belastung von der Theorie dünner homogener Platten aus. Auf Grund heuristischer Überlegungen kam kürzlichA. Assur zu dem Schluß, daß die Lösungen für die homogene Platte auch für die schwimmende Eisplatte verwendent werden kann, sofern einer modifizierte Biegefestigkeit verwendet wird. Zweck dieser Arbeit ist die Untersuchung dieser Frage durch Aufstellen einer mathematisch konsistenten Formulierung der dynamischen Plattengleichung unter Verwendung des Hamiltonschen Prinzips in Verbindung mit der dreidimensionalen Elastizitätstheorie. Es wird gezeigt, daß die Gleichungen für variablen Elastizitätsmodul und konstante Poisson-Zahl mit denen des entsprechenden homogenen Problems übereinstimmen, sofern in letzteren eine modifizierte Biegefestigkeit verwendet wird. Ferner wird gezeigt, daß die Spannungsverteilung nicht linear ist und daß die von verschiedenen Forschern verwendete Formel\(\sigma _{\max } = M{{z_0 } \mathord{\left/ {\vphantom {{z_0 } I}} \right. \kern-\nulldelimiterspace} I}\) nicht anwendbar ist. Die gefundenen Formeln und Spannungsverteilungen werden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hertz, H.: Über das Gleichgewicht schwimmender elastischer Platten. Wiedemann's Annalen der Physik und Chemie22, 449–455 (1884).

    Google Scholar 

  2. Schleicher, F.: Kreisplatten auf elastischer Unterlage. Berlin: Springer. 1926.

    Google Scholar 

  3. Bernstein, S.: Railroad crossing on a floating ice plate; Response, theory, and analysis of a floating ice layer (in Russian). Trudy Nauchno-Tekhnicheskogo Komiteta Narodnogo Komissariata Putei Soobshcheniia84, 36–82 (1929).

    Google Scholar 

  4. Timoshenko, S., andS. Woinowski-Krieger: Theory of Plates and Shells, Chapter 8, Plates on Elastic Foundation, pp. 259–281. McGraw-Hill. 1959.

  5. Shapiro, S. G.: Bending of a semi-infinite plate which rests on an elastic foundation (in Russian). Prikladnaia Matematika i Mekhanika7, 316–320 (1943).

    Google Scholar 

  6. Kerr, A. D.: Elastic plates on a liquid foundation. Proc. ASCE, Journal of the Engineering Gineering Mechanics Division, June 1963, pp. 59–71.

  7. Kerr, A. D.: On plates sealing an incompressible liquid. Int. J. Mechanical Sciences8, 295–304 (1966).

    Google Scholar 

  8. Kerr, A. D., andR. S. Becker: The stress analysis of circular plates sealing a compressible liquid. Int. J. Mechanical Sciences9, 719–726 (1967).

    Google Scholar 

  9. Brunk, H.: Über die Tragfähigkeit von Eisdecken. Dissertation, TU Braunschweig, 1964.

  10. Mahrenholtz, O.: Zur Tragfähigkeit von Eisdecken. Zeitschrift für Angewandte Mathematik und Mechanik46, T170-T173 (1966).

    Google Scholar 

  11. Ewing, W. M., W. S. Jardetzky, andF. Press: Elastic Waves in Layered Media. McGraw-Hill. 1957.

  12. Kheishin, D. E.: Dynamics of Floating Ice Plates (in Russian), Leningrad: Gidrometeorologischeskoe Izdatieltvo. 1967.

    Google Scholar 

  13. Nevel, D. E.: Vibration of a floating ice sheet. U.S. Army Cold Regions Research and Engineering Laboratory, Technical Note, May 1968.

  14. Nevel, D. E.: Moving loads on a floating ice sheet. U.S. Army Cold Regions Research and Engineering Laboratory, Technical Note, May 1968.

  15. Reissman, H., andY. C. Lee: Dynamics of a floating ice sheet. Journal of Hydronautics,2, 108–111 (1968).

    Google Scholar 

  16. Sabodash, P. F., andI. G. Filippov: On a dynamic problem for a thin elastic plate (in Russian). Prikladnaia Mekhanika, OMMK AN Ukr. SSR, pp. 48–53 (1967).

  17. Weeks, W., andA. Assur: The mechanical properties of sea ice. U.S. Army, Cold Regions Research and Engineering Laboratory Report II-C3, September 1967.

  18. Assur, A.: Flexural and other properties of sea ice sheets Proc. of the International Conference on Low Temperature Science. (Oura, H. ed.), Hokkaido University, Japan, 1967.

    Google Scholar 

  19. Newman, M., andM. Forray: Thermal stresses and deflections in thin plates with temperature dependent elastic modulus. Journal of Aerospace Sciences1962, 372–373.

  20. Courant, K., andD. Hilbert: Methods of Mathematical Physics, Vol. I, p. 249. Interscience Publishers. 1953.

  21. Mikhlin, G. S.: Variational Methods of Mathematical Physics, p. 182. Pergamon Press. 1964.

  22. Bregman, G. R., andB. V. Proskuriakov: Ice Crossings (in Russian). Trudy Nauchno-Issledovatel'skikh Uchrezhdenii, Seriia IV, Vypusk 5. Part IV Moscow: Gidrometeoizdat. 1943.

    Google Scholar 

  23. Wyman, M.: Deflections of an infinite plate. Canadian Journal of ResearchA 28, 293–302 (1950).

    Google Scholar 

  24. Nevel, D. E.: Bearing capacity of floating ice sheets. U.S. Army, Cold Regions Research and Engineering Laboratory Report, December 1968.

  25. Saveliev, B. A.: Structure, Composition, and Properties of an Ice Cover of Sea and Fresh Water (in Russian). Izdatiel'stvo Moskovskogo Universiteta, Section 5, pp. 401–438. Moscow: 1963.

  26. Weeks, W. F., andD. L. Anderson: An experimental study of the strength of young sea ice. Trans. Am. Geophys. Union39, 641–647 (1958).

    Google Scholar 

  27. Tabata, T.: Studies of mechanical properties of sea ice V. Measurement of flexural strength (in Japanese). Low Temperature ScienceA 19, 187–201 (1960); Translation American Meteorological Society, T-J-17.

    Google Scholar 

  28. Brown, J. H.: Elasticity and strength of sea ice, in: Ice and Snow-Processes, properties and applications (Kingery, W. D., ed.). M.I.T. Press. 1963.

  29. Frankenstein, G. E.: Strength of ice sheets. Proc. Conference on Ice Pressures Against Structures, Laval University, Quebec, Canada, 10–11 November 1966.

  30. Butiagin, I. P.: Strength of ice and floating ice sheets (in Russian), Section IV, Izd. Nauka, Novosibirsk: 1966.

    Google Scholar 

  31. Cutcliffe, J. L., W. D. Kingery, andR. L. Coble: Elastic and time-dependent deformation of ice sheets, in: Snow and Ice-Processes, Properties, and Applications (Kingery, W. D.). M.I.T. Press 1963.

  32. Hobbs, H. A., J. L. Cutcliffe, andW. D. Kingery: Effect of creep and temperature gradients on long-time deformation of ice sheets, in: Snow and Ice-Processes, Properties and Applications (Kingery, W. D., ed.). M.I.T. Press. 1963.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 Figures

This research was partially supported by National Aeronautics and Space Administration grant no. NGL-33-016-067. Parts of the presented results are contained in a dissertation submitted byW. T. Palmer, to New York University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerr, A.D., Palmer, W.T. The deformations and stresses in floating ice plates. Acta Mechanica 15, 57–72 (1972). https://doi.org/10.1007/BF01177286

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177286

Keywords

Navigation