Skip to main content
Log in

A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A new analytic finite element method (AFEM) is proposed for solving the governing equations of steady magnetohydrodynamic (MHD) duct flows. By the AFEM code one is able to calculate the flow field, the induced magnetic field, and the first partial derivatives of these fields. The process of the code generation is rather lengthy and complicated, therefore, to save space, the actual formulation is presented only for rectangular ducts. A distinguished feature of the AFEM code is the resolving capability of the high gradients near the walls without use of local mesh refinement. Results of traditional FEM, AFEM and finite difference method (FDM) are compared with analytic results demonstrating the manifest superiority of the AFEM code. The programs for the AFEM codes are implemented in GAUSS using traditional computer arithmetic and work in the range of low and moderate Hartmann numbersM<1000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartmann, J.: Hg-Dynamics I. Theory of the laminar flow of an electrically conducting liquid in a homogeneous magnetic field. Kgl. Danske Videnskabernes Selskab. Math.-Fys. Med.15, 1–28 (1937).

    Google Scholar 

  2. Shercliff, J. A.: Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc. Camb. Phil. Soc.49, 136–144 (1953).

    Google Scholar 

  3. Chang, C. C., Lundgren, T. S.: Duct flow in magnetohydrodynamics. ZAMP12, 100–114 (1961).

    Google Scholar 

  4. Gold, R. R.: Magnetohydrodynamic pipe flow. Part 1. J. Fluid Mech.13, 505–512 (1962).

    Google Scholar 

  5. Hunt, J. C. R.: Magnetohydrodynamic flow in rectangular ducts. J. Fluid Mech.21, 577–590 (1965).

    Google Scholar 

  6. Hunt, J. C. R., Stewartson, K.: Magnetohydrodynamic flow in rectangular ducts. II. J. Fluid Mech.23, 563–581 (1965).

    Google Scholar 

  7. Singh, B., Lal, J.: MHD axial flow in a triangular pipe under transverse magnetic field parallel to a side of the triangle. Ind. J. Tech.17, 184–189 (1979).

    Google Scholar 

  8. Singh, B., Lal, J.: Finite element method in magnetohydrodyamic channel flow problems. Int. J. Num. Meth. Eng.15, 1104–1111 (1982).

    Google Scholar 

  9. Singh, B., Lal, J.: A fast direct solution of MHD flow through a rectangular pipe. Ind. J. Tech.20, 163–167 (1982).

    Google Scholar 

  10. Singh, B., Lal, J.: Effect of magnetic field orientation and wall conductivity on MHD channel flows using finite element method. Comput. Methods Appl. Mech. Eng.40, 159–170 (1983).

    Google Scholar 

  11. Singh, B., Lal, J.: Finite element method for MHD channel flow with arbitrary wall conductivity. J. Math. Phys. Sci.18, 501–516 (1984).

    Google Scholar 

  12. Sezgin, M., Köksal, S.: Finite element method for solving MHD flow in a rectangular duct. Int. J. Num. Meth. Eng.28, 445–459 (1989).

    Google Scholar 

  13. Sezgin, M.: Magnetohydrodynamic flow in an infinite channel. Int. J. Num. Meth. Fluids6, 593–609 (1986).

    Google Scholar 

  14. Sezgin, M.: Magnetohydrodynamic flow in a rectangular duct. Int. J. Num. Meth. Fluids7, 697–718 (1987).

    Google Scholar 

  15. Sezgin, M.: Boundary element method solution of MHD flow in a rectangular duct. Int. J. Num. Meth. Fluids18, 937–952 (1994).

    Google Scholar 

  16. Sezgin, M., Aggarwala, B. D., Ariel, P. D.: Electrically driven flows in MHD with mixed electromagnetic boundary conditions. ZAMM68, 267–280 (1988).

    Google Scholar 

  17. Ariel, P. D., Aggarwala, B. D., Sezgin, M.: Simulation of MHD power generator flow using a supercomputer. ZAMM68, 503–511 (1988).

    Google Scholar 

  18. Ramos, J. I., Winowich, N. S.: Magnetohydrodynamic channel flow study. Phys. Fluids29, 992–997 (1986).

    Google Scholar 

  19. Ramos, J. I., Winowich, N. S.: Finite difference and finite element methods for MHD channel flows. Int. J. Num. Meth. Fluids11, 907–934 (1990).

    Google Scholar 

  20. Meir, A. J.: Finite element analysis of magnetohydrodynamic pipe flow. Appl. Math. Comp.57, 177–196 (1993).

    Google Scholar 

  21. Klein, W. U.: Numerical reliability of MHD flow calculations. In: Scientific computing with automatic result verification (Adams, E., Kulisch, U., eds.), pp. 397–421. New York: Academic Press 1993.

    Google Scholar 

  22. Chen, C.-J.: Finite analytic method. In: Handbook of numerical heat transfer (Minkowycz, W. J., Sparrow, E. M., Schneider, G. E., Pletcher, R. H., eds.), pp. 723–746. New York: Wiley 1988.

    Google Scholar 

  23. Demendy, Z.: Fourth order Runge-Kutta method in 2D for linear boundary value problems. Int. J. Num. Meth. Eng.32, 1229–1245 (1991).

    Google Scholar 

  24. Hairet, T., Norsett, S. P., Wanner, G.: Solving ordinary differential equations. I. Nonstiff problems. Berlin Heidelberg New York Tokyo: Springer 1987.

    Google Scholar 

  25. Collatz, L.: The numerical treatment of differential equations. Berlin Göttingen Heidelberg: Springer 1960.

    Google Scholar 

  26. Lynch, R. E., Rice, J. R.: High accuracy finite difference approximations to solutions of elliptic partial differential equations. Proc. Natl. Acad. Sci. USA75, 2541–2544 (1978).

    Google Scholar 

  27. Boisvert, R. F.: Families of high order accurate discretizations of some elliptic problems. SIAM J. Sci. Stat. Comput.2, 268–284 (1981).

    Google Scholar 

  28. Rice, J. R., Boisvert, R. F.: Solving elliptic problems using ELLPACK. New York: Springer 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demendy, Z., Nagy, T. A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers. Acta Mechanica 123, 135–149 (1997). https://doi.org/10.1007/BF01178406

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178406

Keywords

Navigation