Skip to main content
Log in

Roles of alumina in zirconia-based solid electrolyte

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Up to 5 mol% Al2O3 was added to 9 mol% Y2O3-stabilized ZrO2, and the roles of Al2O3 were systematically studied by means of the complex impedance approach, the positron annihilation technique, SEM, TEM, and electron probe microanalysis from the following aspects: (1) the existence of forms of Al2O3 in ZrO2, (2) the effects of Al2O3 on the microstructure of ZrO2, (3) the effects of Al2O3 on the resistance of ZrO2, (4) the microstructure and property changes of ZrO2 with Al2O3 addition during ageing at 940‡C. Two types of grain boundary phase, crystal and amorphous, were discovered. The Al2O3 segregation at grain boundaries can promote the mobility of the grain boundaries and thus results in a low density, because of entrapped pores. The Al2O3 addition decreases the grainboundary resistance in two ways: to scavenge the SiO2 and CaO located at grain boundaries, and to form crystal grain-boundary phases with very high crystal defect concentrations. Ordered microdomains of Zr3Y4O12 were precipitated from ZrO2 grains during ageing, and aluminium was found to facilitate the precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. STEVENS, “Zirconia and Zirconia Ceramics,” 2nd Edn (Magnesium Elektron, 1986) p. 38.

  2. K. C. RADFORD and R. J. BRATTON,J. Mater. Sci. 14 (1979) 59.

    Article  Google Scholar 

  3. M. MIYAYAMA, H. YANAGIDA and A. ASADA,Am. Ceram. Soc. Bull. 64 (1986) 660.

    Google Scholar 

  4. N. M. BEEKMANS and L. HEYNE,Electrochim. Acta 21 (1976) 303.

    Article  Google Scholar 

  5. H. BERNARD, Rep. CEA-R-5090, Commissariat à l'Energie Atomique, CEN-Saclay, France, (1981) p. 117.

    Google Scholar 

  6. M. J. VERKERK, A. J. A. WINNUBST and A. J. BURGGRAAF,J. Mater. Sci. 17 (1982) 3113.

    Article  Google Scholar 

  7. R. L. FULLMAN,J. Metals AIME Trans. 5 (1953) 447.

    Google Scholar 

  8. P. J. JORGENSEN, in “Sintering and Related Phenomena”, edited by G. C. Kuczynski, N. A. Hooton and C. F. Gibbon (Gordon Breach, New York, 1967) p. 401.

    Google Scholar 

  9. S. WU and R. J. BROOK,Solid State Ionics 14 (1984) 123.

    Article  Google Scholar 

  10. R. J. BROOK, in “Treatise on Materials Science and Technology”, Vol. 9, edited by F. F. Wang (Academic Press, New York, 1976) p. 331.

    Google Scholar 

  11. B. H. ALEXANDER and R. W. BALUFFI,Acta Metall. 5 (1957) 666.

    Article  Google Scholar 

  12. P. G. SHEWMON,Trans. AIME 230 (1964) 1134.

    Google Scholar 

  13. E. P. BUTLER and J. DRENNAN,J. Am. Ceram. Soc. 65 (1982) 474.

    Google Scholar 

  14. J. E. BAUERLE,J. Phys. Chem. Solids 30 (1969) 2657.

    Google Scholar 

  15. W. BRANDT and A. DUPASQUIER, “Positron Solid State Physics”, (North-Holland, Amsterdam, 1983) pp. 24, 200.

    Google Scholar 

  16. G. GOTTWALD, K. FORKEL and F. G. WIHSMANN,Silikattechnik 36 (2) (1985) 49.

    Google Scholar 

  17. W. BAUKAL,Electrochim. Acta 14 (1969) 1071.

    Article  Google Scholar 

  18. B. HUDSON and P. T. MOSELEY,J. Solid State Chem. 19 (1976) 383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Yuan, R. Roles of alumina in zirconia-based solid electrolyte. J Mater Sci 30, 923–931 (1995). https://doi.org/10.1007/BF01178426

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01178426

Keywords

Navigation