Skip to main content
Log in

A model of nonlinearly hardening materials for complex loading

Ein Modell für Werkstoffe mit nichtlinearer Verfestigung unter zusammengesetzter Belastung

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A number of observations are made on the macroscopic behavior of materials subjected to uniaxial random cyclic loadings. These observations are then generalized to construct a model describing the material behavior for complex multiaxial loadings, in particular for cyclic loadings. This generalization introduces the concept of a bounding surface in the stress space which always encloses the loading surface. A parameter defined by the relative position of the loading and the bounding surface, and the plastic work done during the most recent loading, determine the value of the plastic modulus.

Zusammenfassung

Zahlreiche Beobachtungen des makroskopischen Verhaltens von Werkstoffen unter beliebiger zyklischer einachsiger Belastung werden gemacht. Diese Beobachtungen werden dann verallgemeinert, um ein Modell des Werkstoffverhaltens für zusammengesetzte, insbesondere zyklische Belastung zu entwickeln. Diese Verallgemeinerung führt zum Konzept der die Belastungsfläche stets einhüllenden Grenzfläche im Spannungsraum. Ein durch die relative Lage der Belastungsfläche zur Grenzfläche definierter Parameter und die plastische Arbeit während der letzten Belastung bestimmen den Wert des Plastizitätsmoduls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, R.: The Mathematical Theory of Plasticity, 1st ed., p. 24. Oxford University Press. 1950.

  2. Hodge, P. G., jr.: The Theory of Piecewise Linear Isotropic Plasticity. IUTAM Colloquium Madrid, 1955.

  3. Ishlinskii, A. Iu.: General Theory of Plasticity with Linear Strain Hardening. Ukr. mat. zh.6, 314 (1954).

    Google Scholar 

  4. Prager, W.: A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids. J. Appl. Mech. Trans. ASME78, 493 (1956).

    Google Scholar 

  5. Shield, R. T., andH. Ziegler: On Prager's Hardening Rule. ZAMP9a, 260 (1958).

    Google Scholar 

  6. Ziegler, H.: A Modification of Prager's Hardening Rule. Quart. Appl. Math.17, 55 (1959).

    Google Scholar 

  7. Edelman, F., andD. C. Drucker: Some Extensions of Elementary Plasticity Theory. J.F.I.251, 581 (1951).

    Google Scholar 

  8. Baltov, A., andA. Sawczuk: A Rule of Anisotropic Hardening. Acta Mech.1, 81 (1965).

    Google Scholar 

  9. Philips, A., andR. L. Sierakowski: On the Concept of the Yield Surface. Acta Mech.1, 29 (1965).

    Google Scholar 

  10. Justusson, J. W., andA. Phillips: Stability and Convexity in Plasticity. Acta Mech.2, 251 (1966).

    Google Scholar 

  11. Eisenberg, M. A., andA. Phillips: A Theory of Plasticity with Non-Coincident Yield and Loading Surfaces. Acta Mech.11, 247 (1971).

    Google Scholar 

  12. Kadashevitch, Iu. I., andV. V. Novozhilov: The Theory of Plasticity which takes into account Residual Microstresses. Appl. Math. Mech.22, 104 (1959).

    Google Scholar 

  13. Eisenberg, M. A., andA. Phillips: On Nonlinear Kinematic Hardening. Acta Mech.5, 1 (1968).

    Google Scholar 

  14. Green, A. E., andP. M. Naghdi: A General Theory of an Elastic-Plastic Continuum. Arch. Rat. Mech. Anal.18, 251 (1965).

    Google Scholar 

  15. Koiter, W. T.: Stress-Strain Relations, Uniqueness and Variational Theorems for Elastic-Plastic Materials with a Singular Yield Surface. Quart. Appl. Math.11, 350 (1953).

    Google Scholar 

  16. Batdford, S. B., andB. Budiansky: A Mathematical Theory of Plasticity Based on the Concept of Slip. TN 1871, NACA, 1949.

  17. Iwan, W. D.: On a Class of Models for the Yielding Behavior of Continuous and Composite Systems. J. Appl. Mech.34, 612 (1967).

    Google Scholar 

  18. Mroz, Z.: On the Description of Anisotropic Workhardening. J. Mech. Phys. Solids15, 163 (1967).

    Google Scholar 

  19. Mroz, Z.: An Attempt to Describe the Behavior of Metals under Cyclic Loads Using a More General Workhardening Model. Acta Mech.7, 199 (1969).

    Google Scholar 

  20. Phillips, A., andTang Juh-Ling: The Effect of Loading Path on the Yield Surface at Elevated Temperatures. Int. J. Solids Structures8, 463 (1972).

    Google Scholar 

  21. Internal Friction, Damping and Cyclic Plasticity. ASTM Special Technical Publication No. 378, afterJodean Morrow, p. 49, 1964.

  22. Sandor, B. I.: Fundamentals of Cyclic Stress and Strain, 1st printing, p. 30, 98. University of Wisconsin Press. 1972.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dafalias, Y.F., Popov, E.P. A model of nonlinearly hardening materials for complex loading. Acta Mechanica 21, 173–192 (1975). https://doi.org/10.1007/BF01181053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181053

Keywords

Navigation